[1]邵珠格,刘如沁,吴艳青,等.高温作用后HMX基PBX热损伤表征试验研究[J].火炸药学报,2020,43(预出版):1-8.[doi:10.14077/ j.issn.1007-7812.201912025]
 Shao Zhu-ge,Liu Ru-qin,Wu Yan-qing,et al.Experimental Study on Thermal Damage Characterization of HMX based PBX after High-temperature Treatment[J].,2020,43(预出版):1-8.[doi:10.14077/ j.issn.1007-7812.201912025]
点击复制

高温作用后HMX基PBX热损伤表征试验研究

参考文献/References:

[1] Glascoe E A, Hsu P C, Springer H K, et al. The response of the HMX-based material PBXN-9 to thermal insults: thermal decomposition kinetics and morphological changes[J]. Thermochimica Acta, 2011, 515 (1):58-66.
[2] Sharia O, Kuklja M M. Rapid Materials Degradation Induced by Surfaces and Voids: Ab Initio Modeling of β-Octatetramethylene Tetranitramine[J]. Journal of the American Chemical Society, 2012, 134 (28):11815-11820
[3] 文玉史, 文雯, 代晓淦, 等. 相变与微裂纹对HMX晶体高温下撞击感度的影响机制[J]. 含能材料, 2019, 27 (3):184-189.
WEN Yu shi, WEN Wen, DAI Xiao gan, et al. Influence Mechanism of Phase Transition and Micro Cracks on Impact Sensitivity of HMX Crystal at High Temperature[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2019, 27 (3): 184-189.
[4] Bouma R. H. B., Van der Heijden, Antoine E. D. M. The Effect of RDX Crystal Defect Structure on Mechanical Response of a Polymer-Bonded Explosive[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 484-493.
[5] Tringe J W, Kercher J R, Springer H K, et al. Numerical and experimental study of thermal explosions in LX-10 and PBX 9501: Influence of thermal damage on deflagration processes[J]. Journal of Applied Physics, 2013, 114 (4): 043504.
[6] Akhavan J, Burke T C. Polymer Binder for High Performance Explosives[J]. Propellants, Explosives, Pyrotechnics, 1992, 17 (6): 271-274.
[7] W.A. Blaine, Shock Wave Science and Technology Reference Library (Volume5): Non-Shock Initiation of Explosives[M]. Springer, Berlin, 2010
[8] Sharia O, Kuklja M M. Rapid Materials Degradation Induced by Surfaces and Voids: Ab Initio Modeling of β-Octatetramethylene Tetranitramine[J]. Journal of the American Chemical Society, 2012, 134 (28): 11815-11820.
[9] Guanyun YAN, Qiang TIAN, Jiahui LIU, et al. The Microstructural Evolution in HMX Based Plasticbonded Explosive during Heating and Cooling Process: an in situ Small-angle Scattering Study[J]. Cent. Eur. J. Energ. Mater., 2016, 13 (4), 916-926.
[10] Peterson P D, Mang J T, Asay B W. Quantitative analysis of damage in an octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazonic-based composite explosive subjected to a linear thermal gradient[J]. Journal of Applied Physics, 2005, 97 (9): 093507.
[11] Peter C. Hsu, Dehaven M, Mcclelland M, et al. Thermal Damage on LX-04 Mock Material and Gas Permeability Assessment[J]. Propellants Explosives Pyrotechnics, 2006, 31 (1): 56-60.
[12] Hsu P C, Dehaven M, Mcclelland M, et al. CHARACTERIZATION OF DAMAGED MATERIALS[R]. Office of Scientific & Technical Information Technical Reports, 2006.
[13] Willey T M, Lauderbach L, Gagliardi F, et al. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition[J]. Journal of Applied Physics, 2015, 118 (5): 055901.
[14] Yuan Z N, Chen H, Li J M, et al. In-Situ X-ray Tomography Observation of Structure Evolution in 1,3,5-Triamino-2,4,6-Trinitrobenzene Based Polymer Bonded Explosive (TATB-PBX) under Thermo-Mechanical Loading[J]. Materials, 2018, 11 (5): 732-745.
[15] 刘本德, 陈华, 张伟斌, 张才鑫, 刘晨. 基于CT图像序列的围压TATB基PBX冲击损伤特性[J]. 含能材料, 2019, 27 (03): 196-201.
LIU Ben?de, CHEN Hua, ZHANG Wei?bin, et al. Impact Damage Characteristics of TATB?based Polymer Bonded Explosive Under Confining Pressure Based on the CT Image Sequences[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2019, 27 (3): 196-201.
[16] Hsu P, Souers C, Haven M D, et al. Characterization of thermally-damaged LX-17[J]. Journal of Thermal Analysis and Calorimetry, 2008, 93 (1):311-317.
[17] Brill T B, Reese C O. Analysis of intra- and intermolecular interactions relating to the thermophysical behavior of. alpha- beta and delta-octahydro- 1, 3, 5, 7-tetranitro- 1, 3, 5, 7-tetraazocine[J]. Journal of Experimental Botany, 2001, 52 (356): 541-549.
[18] Herrmann M, Engel W, Eisenreich N. Thermal expansion, transitions, sensitivities and burning rates of HMX (p 190-195)[J]. Propellants, Explosives, Pyrotechnics, 1992, 17 (4): 190-195.
[19] Chao Xue, Jie Sun, Bin Kang, et al. The β-δ-Phase Transition and Thermal Expansion of Octahydro-1,3,5,7-Tetranitro‐1,3,5,7-Tetrazocine[J]. Propellants, Explosives, Pyrotechnics, 2010, 35: 333-338.
[20] 代晓淦. 高温下HMX基PBX炸药撞击响应规律及影响机制研究[D]. 北京: 北京理工大学, 2018.
Dai Xiaogan. Impact Responses and Influence Mechanisms of HMX based Polymer-bonded Explosives Subjected to Elevated Temperatures[D]. Beijing: Beijing Institute of technology, 2018.

备注/Memo

基金项目:科学挑战专题(TZ2016001);国家自然科学基金(11872119)
作者简介:邵珠格(1995-),硕士,主要从事炸药损伤表征研究,E-mail: shaozge@163.com
通讯作者:吴艳青(1974-),博士,教授,主要从事炸药点火机理研究,E-mail: wuyqing@bit.edu.cn

更新日期/Last Update: 2020-05-15


@Copyright 西安近代化学研究所(中国兵器工业第204研究所)  陕ICP备14002633号-2
地址:西安市18号信箱《火炸药学报》编辑部   联系电话:029-88291297   邮箱:hzyxb@204s.com