[1]刘英哲.含能材料晶形预测方法:附着能模型及其发展[J].火炸药学报,2020,43(预出版):1-12.[doi:10.14077/j.issn.1007-7812.202002003]
 Liu Ying-zhe.Crystal Morphology Prediction Method of Energetic Materials: Attachment Energy Model and Its Development[J].,2020,43(预出版):1-12.[doi:10.14077/j.issn.1007-7812.202002003]
点击复制

含能材料晶形预测方法:附着能模型及其发展

参考文献/References:

[1]舒远杰, 武宗凯, 刘宁, 等. 晶形控制及形成共晶:含能材料改性研究的重要途径[J]. 火炸药学报, 2015, 38(05): 1–9.
SHU Yuan-jie, WU Zong-kai, LIU Ning, et al. Crystal control and cocrystal formation: important route of modification research of energetic materials[J]. Chinese Journal of Explosives and Propellants, 2015, 38(05): 1–9.
[2]周群, 陈智群, 郑朝民, 等. FOX-7晶体形貌对感度的影响[J]. 火炸药学报, 2014, 37(05): 67-69+76.
ZHOU Qun, CHEN Zhi-qun, ZHENG Chao-min, et al. Effect of morphology of FOX-7 crystals on its sensitivity[J]. Journal of Explosives and Propellants, 2014, 37(05): 67-69+76.
[3]蒋银禄, 徐金江, 张浩斌, 等. HMX结晶形貌研究进展[J]. 材料导报, 2013, 27(23): 11–17.
JIANG Yin-lu, XU Jin-jiang, ZHANG Hao-bin, et al. Research progress on HMX crystallization morphology[J]. Materials Renew, 2013, 27(12): 11–17.
[4]Bondarchuk S V. Significance of crystal habit sphericity in the determination of the impact sensitivity of bistetrazole-based energetic salts[J]. CrystEngComm, 2018, 20(38): 5718–5725.
[5]Song X, Wang Y, An C, et al. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine[J]. Journal of Hazardous Materials, 2008, 159(2): 222–229.
[6]Van Der Heijden A E D M, Bouma R H B. Crystallization and characterization of RDX, HMX, and CL-20[J]. Crystal Growth & Design, 2004, 4(5): 999–1007.
[7]Dandekar P, Kuvadia Z B, Doherty M F. Engineering crystal morphology[J]. Annual Review of Materials Research, 2013, 43(1): 359–386.
[8]Docherty R, Clydesdale G, Roberts K J, et al. Application of Bravais-Friedel-Donnay-Harker, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals[J]. Journal of Physics D: Applied Physics, 1991, 24(2): 89.
[9]Berkovitch-Yellin Z. Toward an ab initio derivation of crystal morphology[J]. Journal of the American Chemical Society, 1985, 107(26): 8239–8253.
[10]Zhang C, Ji C, Li H, et al. Occupancy model for predicting the crystal morphologies influenced by solvents and temperature, and its application to nitroamine explosives[J]. Crystal Growth & Design, 2013, 13(1): 282–290.
[11]Liu N, Zhou C, Wu Z, et al. Theoretical study on crystal morphologies of 1,1-diamino-2,2-dinitroethene in solvents: Modified attachment energy model and occupancy model[J]. Journal of Molecular Graphics and Modelling, 2018, 85: 262–269.
[12]Zepeda-Ruiz L A, Maiti A, Gee R, et al. Size and habit evolution of PETN crystals—a lattice Monte Carlo study[J]. Journal of Crystal Growth, 2006, 291(2): 461–467.
[13]Maiti A, Gee R H. Modeling growth, surface kinetics, and morphology evolution in PETN[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(6): 489–497.
[14]Shim H-M, Kim H-S, Koo K-K. Molecular modeling on supersaturation-dependent growth habit of 1,1-diamino-2,2-dinitroethylene[J]. Crystal Growth & Design, 2015, 15(4): 1833–1842.
[15]Seo B, Kim S, Lee M, et al. Prediction of the crystal morphology of β-HMX using a generalized interfacial structure analysis model[J]. Crystal Growth & Design, 2018, 18(4): 2349–2357.
[16]Song L, Zhao F-Q, Xu S-Y, et al. Uncovering the action of ethanol controlled crystallization of 3,4-bis(3-nitrofurazan-4-yl)furoxan crystal: A molecular dynamics study[J]. Journal of Molecular Graphics and Modelling, 2019, 92: 303–312.
[17]Shim H-M, Koo K-K. Molecular approach to the effect of interfacial energy on growth habit of ε-HNIW[J]. Crystal Growth & Design, 2016, 16(11): 6506–6513.
[18]Shim H-M, Koo K-K. Prediction of growth habit of β-cyclotetramethylene-tetranitramine crystals by the first-principles models[J]. Crystal Growth & Design, 2015, 15(8): 3983–3991.
[19]Shim H-M, Koo K-K. Crystal morphology prediction of hexahydro-1,3,5-trinitro-1,3,5-triazine by the spiral growth model[J]. Crystal Growth & Design, 2014, 14(4): 1802–1810.
[20]Lu J J, Ulrich J. An improved prediction model of morphological modifications of organic crystals induced by additives[J]. Crystal Research and Technology, 2003, 38(1): 63–73.
[21]Xiong S-L, Chen S-S, Jin S-H, et al. Additives effects on crystal morphology of dihydroxylammonium 5,5-bistetrazole-1,1-diolate by molecular dynamics simulations[J]. Journal of Energetic Materials, 2016, 34(4): 384–394.
[22]Wang D-X, Chen S-S, Li Y-Y, et al. An investigation into the effects of additives on crystal characteristics and impact sensitivity of RDX[J]. Journal of Energetic Materials, 2014, 32(3): 184–198.
[23]刘英哲, 毕福强, 来蔚鹏, 等. 5,5’-联四唑-1,1’-二氧二羟铵在不同生长条件下的晶体形貌预测[J]. 含能材料, 2018, 26(03): 210–217.
LIU Ying-zhe, BI Fu-qiang, LAI Wei-peng, et al. Crystal morphology prediction of dihydroxylammonium 5, 5’-bistetrazole-1,1’-diolate under different growth conditions[J]. Chinese Journal of Energetic Materials, 2018, 26(03): 210–217.
[24]Liu Y, Gou R, Zhang S, et al. Solvent effect on the formation of NTO/TZTN cocrystal explosives[J]. Computational Materials Science, 2019, 163: 308–314.
[25]Lan Y, Zhai J, Li D, et al. The influence of solution chemistry on the morphology of ammonium dinitramide crystals[J]. Journal of Materials Science, 2015, 50(14): 4933–4939.
[26]Han G, Zhang S, Gou R, et al. Comparative study of solvent-CL-20 interactions at different roughness crystal surfaces: Molecular dynamics simulation[J]. Computational and Theoretical Chemistry, 2018, 1136–1137: 49–55.
[27]Chen F, Zhou T, Wang M. Spheroidal crystal morphology of RDX in mixed solvent systems predicted by molecular dynamics[J]. Journal of Physics and Chemistry of Solids, 2020, 136: 109196.
[28]Chen G, Chen C, Xia M, et al. A study of the solvent effect on the crystal morphology of hexogen by means of molecular dynamics simulations[J]. RSC Advances, 2015, 5(32): 25581–25589.
[29]Chen G, Xia M, Lei W, et al. Prediction of crystal morphology of cyclotrimethylene trinitramine in the solvent medium by computer simulation: A case of cyclohexanone solvent[J]. The Journal of Physical Chemistry A, 2014, 118(49): 11471–11478.
[30]Li J, Jin S, Lan G, et al. The effect of solution conditions on the crystal morphology of β-HMX by molecular dynamics simulations[J]. Journal of Crystal Growth, 2019, 507: 38–45.
[31]Liu Y, Niu S, Lai W, et al. Crystal morphology prediction of energetic materials grown from solution: insights into the accurate calculation of attachment energies[J]. CrystEngComm, 2019, 21(33): 4910–4917.
[32]TAO J, WANG X. Crystal structure and morphology of β-HMX in acetone: A molecular dynamics simulation and experimental study[J]. Journal of Chemical Sciences, 2017, 129(4): 495–503.
[33]Yan T, Wang J-H, Liu Y-C, et al. Growth and morphology of 1,3,5,7-tetranitro-1,3,5,7-tetraazacy-clooct ane (HMX) crystal[J]. Journal of Crystal Growth, 2015, 430: 7–13.
[34]Duan X, Wei C, Liu Y, et al. A molecular dynamics simulation of solvent effects on the crystal morphology of HMX[J]. Journal of Hazardous Materials, 2010, 174(1): 175–180.
[35]段晓惠, 卫春雪, 裴重华, 等. HMX晶体形貌预测[J]. 含能材料, 2009, 17(06): 655–659.
DUAN Xiao-hui, WEI Chun-xue, PEI Chong-hua, et al. Prediction of crystal morphology of HMX[J]. Chinese Journal of Energetic Materials, 2009, 17(06): 655–659.
[36]Lan G, Jin S, Li J, et al. Molecular dynamics investigation on the morphology of HNIW affected by the growth condition[J]. Journal of Energetic Materials, 2019, 37(1): 44–56.
[37]Lan G, Jin S, Li J, et al. The study of external growth environments on the crystal morphology of ε-HNIW by molecular dynamics simulation[J]. Journal of Materials Science, 2018, 53(18): 12921–12936.
[38]Chen H, Li L, Jin S, et al. Effects of additives on ε-HNIW crystal morphology and impact sensitivity[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(1): 77–82.
[39]Shen F, Lv P, Sun C, et al. The crystal structure and morphology of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) p-xylene solvate: A joint experimental and simulation study[J]. Molecules, 2014, 19(11): 18574–18589.
[40]Song L, Zhao F-Q, Xu S-Y, et al. Crystal morphology prediction and anisotropic evolution of 1,1-diamino-2,2-dinitroethylene (FOX-7) by temperature tuning[J]. Scientific Reports, 2020, 10(1): 1–9.
[41]Lan G, Jin S, Li J, et al. Molecular dynamics simulation on the morphology of 1,1-diamino-2,2-dinitroethylene (FOX-7) affected by dimethyl sulfoxide (DMSO) and temperature[J]. Canadian Journal of Chemistry, 2019, 97(7): 538–545.
[42]刘宁, 周诚, 武宗凯, 等. FOX-7在H2O/DMF溶剂中的结晶形貌预测[J]. 含能材料, 2018, 26(06): 471–476.
LIU Ning, ZHOU Cheng, WU Zong-kai, et al. Prediction of crystal morphology of FOX-7in H2O/DMF solvents[J]. Chinese Journal of Energetic Materials, 2018, 26(06): 471–476.
[43]Zhao Q, Liu N, Wang B, et al. A study of solvent selectivity on the crystal morphology of FOX-7 via a modified attachment energy model[J]. RSC Advances, 2016, 6(64): 59784–59793.
[44]刘宁, 王伯周, 舒远杰, 等. FOX-7结晶形貌的分子动力学模拟[J]. 火炸药学报, 2016, 39(02): 40–44.
LIU Ning, WANG Bo-zhou, SHU Yuan-jie, et al. Molecular dynamics simulation on crystal morphology of FOX-7[J]. Journal of Explosives and Propellants, 2016, 39(02): 40–44.
[45]任晓婷, 叶丹阳, 丁宁, 等. 溶剂效应对FOX-7晶体形貌影响的分子动力学模拟研究[J]. 兵工学报, 2015, 36(02): 272–278.
REN Xiao-ting, YE Dan-yang, DING Ning, et al. A Molecular dynamics simulation of solvent effects on the crystal morphology of FOX-7[J]. Acta Armamentarii, 2015, 36(02): 272–278.
[46]Li J, Jin S, Lan G, et al. Morphology control of 3-nitro-1,2,4-triazole-5-one (NTO) by molecular dynamics simulation[J]. CrystEngComm, 2018, 20(40): 6252–6260.
[47]马松, 袁俊明, 刘玉存, 等. NTO结晶形貌的预测[J]. 火炸药学报, 2014, 37(01): 53–57.
MA Song, YUAN Jun-ming, LIU Yu-cun, et al. Prediction of crystal morphology on NTO[J]. Journal of Explosives and Propellants, 2014, 37(01): 53–57.
[48]Chen L, She C, Pan H, et al. Habit prediction of 3,4,5-trinitro-1H-pyrazole in four solvent mediums using a molecular dynamics simulation[J]. Journal of Crystal Growth, 2019, 507: 58–64.
[49]李蓉, 甘强, 于谦, 等. LLM-105晶体形貌分子动力学模拟[J]. 火炸药学报, 2018, 41(03): 223–229.
LI Rong, GAN Qiang, YU Qian, et al. Molecular dynamics simulation on crystal morphology of LLM-105[J]. Journal of Explosives and Propellants, 2018, 41(03): 223–229.
[50]Song L, Chen L, Cao D, et al. Solvent selection for explaining the morphology of nitroguanidine crystal by molecular dynamics simulation[J]. Journal of Crystal Growth, 2018, 483: 308–317.
[51]Song L, Chen L, Wang J, et al. Prediction of crystal morphology of 3,4-Dinitro-1H-pyrazole (DNP) in different solvents[J]. Journal of Molecular Graphics and Modelling, 2017, 75: 62–70.
[52]Shi W, Chu Y, Xia M, et al. Crystal morphology prediction of 1,3,3-trinitroazetidine in ethanol solvent by molecular dynamics simulation[J]. Journal of Molecular Graphics and Modelling, 2016, 64: 94–100.
[53]石文艳, 王风云, 夏明珠, 等. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物晶体形貌的MD模拟[J]. 含能材料, 2016, 24(01): 19–26.
SHI Wen-yan, WANG Feng-yun, XIA Ming-zhu, et al. Molecular dynamics simulation on the crystal morphology of 2,6-diamino-3,5-dinitropyridine-1-oxide[J]. Chinese Journal of Energetic Materials, 2016, 24(01): 19–26.
[54]任晓婷, 杜涛, 何金选, 等. 双(2,2,2-三硝基乙基)胺的晶体形貌预测及控制[J]. 含能材料, 2015, 23(08): 737–740.
REN Xiao-ting, DU Tao, HE Jin-xuan, et al. Prediction and control of crystal morphology of BTNA[J]. Chinese Journal of Energetic Materials, 2015, 23(08): 737–740.
[55]冯璐璐, 曹端林, 王建龙, 等. 1-甲基-2,4,5-三硝基咪唑的晶体形貌预测[J]. 含能材料, 2015, 23(05): 443–449.
FENG Lu-lu, CAO Duan-lin, WANG Jian-long, et al. Prediction of crystal morphology of MTNI[J]. Chinese Journal of Energetic Materials, 2015, 23(05): 443–449.
[56]任晓婷, 杨利, 张国英, 等. TATB晶体形貌的计算模拟[J]. 火炸药学报, 2010, 33(06): 43–46.
REN Xiao-ting, YANG Li, ZHANG Guo-ying, et al. Computational simulation of the crystal morphology of TATB[J]. Chinese Journal of Explosives and Propellants, 2010, 33(06): 43–46.
[57]杨利, 任晓婷, 严英俊, 等. 六硝基茋的晶体结构及形貌模拟[J]. 火炸药学报, 2009, 32(06): 1–5.
YANG Li, REN Xiao-ting, YAN Ying-jun, et al. Crystal structure and morphology simulation of HNS[J]. Chinese Journal of Explosives and Propellants, 2009, 32(06): 1–5.
[58]Xu X, Chen D, Li H, et al. Crystal morphology modification of 5, 5′-Bisthiazole-1,1′- dioxyhydroxyammonium Salt[J]. ChemistrySelect, 2020, 5(6): 1919–1924.
[59]Dong W, Chen S, Jin S, et al. Effect of sodium alginate on the morphology and properties of high energy insensitive explosive TKX-50[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(4): 413–422.
[60]Chen F, Zhou T, Li J, et al. Crystal morphology of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) under solvents system with different polarity using molecular dynamics[J]. Computational Materials Science, 2019, 168: 48–57.
[61]任晓婷, 张国涛, 何金选, 等. 1,1′-二羟基-5,5′-联四唑二羟胺盐的晶形计算及控制[J]. 火炸药学报, 2016, 39(02): 68–71.
REN Xiao-ting, ZHANG Guo-tao, HE Jin-xuan, et al. Calculation and control of crystal morphology of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate[J]. Chinese Journal of Explosives and Propellants, 2016, 39(02): 68–71.
[62]Chen X, He L, Li X, et al. Molecular simulation studies on the growth process and properties of ammonium dinitramide crystal[J]. The Journal of Physical Chemistry C, 2019, 123(17): 10940–10948.
[63]Li J-W, Zhang S-H, Gou R-J, et al. The effect of crystal-solvent interaction on crystal growth and morphology[J]. Journal of Crystal Growth, 2019, 507: 260–269.
[64]Gao H, Zhang S, Ren F, et al. Theoretical insight into the temperature-dependent acetonitrile (ACN) solvent effect on the diacetone diperoxide (DADP)/1,3,5-tribromo-2,4,6-trinitrobenzene (TBTNB) cocrystallization[J]. Computational Materials Science, 2016, 121: 232–239.
[65]Zhu S, Zhang S, Gou R, et al. Understanding the effect of solvent on the growth and crystal morphology of MTNP/CL-20 cocrystal explosive: experimental and theoretical studies[J]. Crystal Research and Technology, 2018, 53(4): 1700299.
[66]Wu C, Zhang S, Gou R, et al. Theoretical insight into the effect of solvent polarity on the formation and morphology of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20)/2,4,6-trinitro-toluene(TNT) cocrystal explosive[J]. Computational and Theoretical Chemistry, 2018, 1127: 22–30.
[67]Han G, Li Q, Gou R, et al. Growth morphology of CL-20/HMX cocrystal explosive: insights from solvent behavior under different temperatures[J]. Journal of Molecular Modeling, 2017, 23(12): 360.
[68]Materials Studio 8.0; Acceryls, Inc.: San Diego, CA, 2014[J].
[69]Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338–7364.
[70]Sun H. Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters[J]. Journal of Computational Chemistry, 1994, 15(7): 752–768.
[71]Sun H, Mumby S J, Maple J R, et al. An ab initio CFF93 all-atom force field for polycarbonates[J]. Journal of the American Chemical Society, 1994, 116(7): 2978–2987.
[72]Sun H. Ab initio calculations and force field development for computer simulation of polysilanes[J]. Macromolecules, 1995, 28(3): 701–712.
[73]Dauber-Osguthorpe P, Roberts V A, Osguthorpe D J, et al. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system[J]. Proteins: Structure, Function, and Bioinformatics, 1988, 4(1): 31–47.
[74]An Q, Cheng T, Goddard W A, et al. Anisotropic impact sensitivity and shock induced plasticity of TKX-50 (dihydroxylammonium 5, 5′-bis (tetrazole)-1, 1′-diolate) single crystals: from large-scale molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2015, 119(4): 2196–2207.
[75]Mayo S L, Olafson B D, Goddard W A. DREIDING: a generic force field for molecular simulations[J]. Journal of Physical chemistry, 1990, 94(26): 8897–8909.
[76]Song L, Zhao F-Q, Xu S-Y, et al. Molecular modeling on morphology of 3,4-bis(3-nitrofurazan-4-yl)furoxan crystals in dichloroethane or benzene mixture solvents[J]. Journal of Molecular Modeling, 2019, 25(12): 373.
[77]Liu N, Li Y, Zeman S, et al. Crystal morphology of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in a solvent system: molecular dynamics simulation and sensitivity study[J]. CrystEngComm, 2016, 18(16): 2843–2851.
[78]Allen M P, Tildesley D J. Computer simulation of liquids[M]. Oxford university press, 2017.
[79]Liu Y, Lai W, Ma Y, et al. Face-dependent solvent adsorption: A comparative study on the interfaces of HMX crystal with three solvents[J]. The Journal of Physical Chemistry B, 2017, 121(29): 7140–7146.
[80]Liu Y, Lai W, Yu T, et al. Understanding the growth morphology of explosive crystals in solution: insights from solvent behavior at the crystal surface[J]. RSC Advances, 2017, 7(3): 1305–1312.
[81]Liu Y, Yu T, Lai W, et al. Adsorption behavior of acetone solvent at the HMX crystal faces: A molecular dynamics study[J]. Journal of Molecular Graphics and Modelling, 2017, 74: 38–43.
[82]Liu Y, Yu T, Lai W, et al. Deciphering solvent effect on crystal growth of energetic materials for accurate morphology prediction[J]. Crystal Growth & Design, 2020, 20(2): 521-524

相似文献/References:

[1]马海霞,宋纪蓉,胡荣祖,等.HMX,CL-20和DNTF自由基的光照检测[J].火炸药学报,2007,30(2):33.
[2]卢芳云,林玉亮,王晓燕,等.含能材料的高应变率响应实验[J].火炸药学报,2006,29(1):1.
[3]黄辉,泽山,黄亨建,等.新型含能材料的研究进展[J].火炸药学报,2005,28(4):9.
[4]刘子如,张腊莹.含能材料燃烧过程中热分解化学的研究进展[J].火炸药学报,2005,28(4):72.
[5]解国玲,任芊,董守龙,等.近红外光谱技术在含能材料成分分析中的建模研究[J].火炸药学报,2003,26(4):78.
[6]张小兵,袁亚雄,谢玉树.等离子体点火密闭爆发器实验研究[J].火炸药学报,2003,26(2):24.
[7]刘艳,刘子如,邱刚,等.静态与动态高压对含能材料热分解的影响[J].火炸药学报,2001,24(3):26.
[8]张泰华,卞桃华.含能材料冲击波引发判据的分析[J].火炸药学报,2001,24(3):41.
[9]张小兵,袁亚雄,余斌,等.固体含能材料激光点火性能实验研究[J].火炸药学报,2000,23(2):34.
[10]余秦伟,杨建明,赵锋伟,等.1,3,5-三取代六氢均三嗪类化合物的合成[J].火炸药学报,2008,31(3):50.

更新日期/Last Update: 2020-04-29


@Copyright 西安近代化学研究所(中国兵器工业第204研究所)  陕ICP备14002633号-2
地址:西安市18号信箱《火炸药学报》编辑部   联系电话:029-88291297   邮箱:hzyxb@204s.com