[1]成 健,沈心怡,王 睿,等.含能功能化氧化石墨烯的制备、热分解行为及其对AP热分解的催化作用[J].火炸药学报,2020,43(2):180-187.[doi:10.14077/j.issn.1007-7812.201909010]
 CHENG Jian,SHEN Xin-yi,WANG Rui,et al.Preparation and Thermal Decomposition Behavior of Energetic Functionalized Graphene Oxide and Its Catalytic Effect on the Thermal Decomposition of AP[J].,2020,43(2):180-187.[doi:10.14077/j.issn.1007-7812.201909010]
点击复制

含能功能化氧化石墨烯的制备、热分解行为及其对AP热分解的催化作用

参考文献/References:

[1] 宋琴,代志高,尹必文,等. GAP高能低特征信号推进剂的燃烧性能调节[J]. 火炸药学报,2017,40(5):60-63.
SONG Qin, DAI Zhi-gao, YIN Bi-wen, et al. Regulation of the combustion properties for GAP propellant with high energy and low signature[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2017, 40(5): 60-63.
[2]叶平,鲁月文,许鹏飞,等. 纳米CoFe2O4@C复合催化剂的制备及其对AP的催化性能[J]. 火炸药学报,2019,42(4):358-362.
YE Ping, LU Yue-wen, XU Peng-fei, et al. Preparation of CoFe2O4@C nano-composites and their catalytic performance for the thermal decomposition of ammonium perchlorate[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2019, 42(4): 358-362.
[3]CHENG J, ZHENG Y, LI Z M, et al. Catalytic reaction of ammonium perchlorate with energetic cobalt complex of 2,6-diamino-3,5-dinitropyrazine-1-oxide during thermal decomposition process[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(3): 1875-1885.
[4]VARGEESE A A. A kinetic investigation on the mechanism and activity of copper oxide nanorods on the thermal decomposition of propellants[J]. Combustion and Flame, 2016, 165: 354-360.
[5]张正斌. 固体推进剂用低特征信号氧化剂的研究进展[J].化学推进剂与高分子材料,2013,11(2): 18-24.
ZHANG Zheng-bin. Research progress in low signature oxidizers for solid propellants[J]. Chemical Propellants & Polymeric Materials, 2013, 11(2): 18-24.
[6]张建侃,赵凤起,徐司雨,等. 应用于固体推进剂的石墨烯及其复合材料制备技术研究进展[J]. 火炸药学报,2016,39(3):9-16.
ZHANG Jian-kan, ZHAO Feng-qi, XU Si-yu, et al. New progress of study on preparation methods of graphene and graphene-based composites applied in solid propellants[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2016, 39(3): 9-16.
[7]LI N, GENG Z F, CAO M H, et al. Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate[J]. Carbon, 2013, 54: 124-132.
[8]ZHAO J, LIU Z S, QIN Y L, et al. Fabrication of Co3O4/graphene oxide composites using supercritical fluid and their catalytic application for the decomposition of ammonium perchlorate[J]. Cryst Eng Comm, 2014, 16(10): 2001-2008.
[9]ZHU J W, ZENG G Y, NIE F D, et al. Decorating graphene oxide with CuO nanoparticles in a water–isopropanol system[J]. Nanoscale, 2010, 2(6): 988-994.
[10]XU C, WANG X, ZHU J W, et al. Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets [J]. Journal of Materials Chemistry, 2008, 18(46): 5625-5629.
[11]GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116(9): 5464-5519.
[12]刘子如,阴翠梅,孔扬辉,等. 高氯酸铵与HMX和RDX的相互作用[J]. 推进技术,2000,21(6):70-73.
LIU Zi-ru, YIN Cui-mei, KONG Yang-hui, et al. Interaction of ammonium perchlorate with HMX and RDX during decomposition[J]. Journal of Propulsion Technology, 2000, 21(6): 70-73.
[13]MAHMOOD J, KIM D, JEON I Y, et al. Scalable synthesis of pure and stable hexaaminobenzene trihydrochloride[J]. Synlett, 2013, 24(2): 246-248.
[14]KUMAR N A, CHOI H J, SHIN Y R, et al. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors[J]. ACS Nano, 2012, 6(2): 1715-1723.
[15]YANG H F, LI F H, SHAN C S, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement[J]. Journal of Materials Chemistry, 2009, 19(26): 4632-4638.
[16]BEYAROVA E, ITKIS M E, RAMESH P, et al. Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups[J]. Journal of the American Chemical Society, 2009, 131(4): 1336-1337.
[17]QIU Y, GUO F, HURT R, et al. Explosive thermal reduction of graphene oxide-based materials: mechanism and safety implications[J]. Carbon, 2014, 72: 215-223.
[18]MALLICK L, KUMAR S, CHOWDHURY A. Thermal decomposition of ammonium perchlorate—A TGA–FTIR–MS study: Part I[J]. Thermochimica Acta, 2015, 610: 57-68.
[19]ISERT S, XIN L, XIE J, et al. The effect of decorated graphene addition on the burning rate of ammonium perchlorate composite propellants[J]. Combustion and Flame, 2017, 183: 322-329.
[20]HOSSEINI S G, KHODADADIPOOR Z, MAHYARI M, et al. Copper chromite decorated on nitrogen-doped graphene aerogel as an efficient catalyst for thermal decomposition of ammonium perchlorate particles[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2): 963-972.
[21]王学宝,李晋庆,罗运军. 高氯酸铵/石墨烯纳米复合材料的制备及热分解行为[J].火炸药学报,2012,35(6):76-80.
WANG Xue-bao, LI Jin-qing, LUO Yun-jun. Preparation and thermal decomposition behaviour of ammonium perchlorate/graphene aerogel nanocomposites[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2012, 35(6): 76-80.

相似文献/References:

[1]何卫东,董朝阳.高分子钝感发射药的低温感机理[J].火炸药学报,2007,30(1):9.
[2]张 昊,彭 松,庞爱民,等.NEPE推进剂老化过程中结构与力学性能的关系[J].火炸药学报,2007,30(1):13.
[3]路向辉,曹继平,史爱娟,等.表面处理芳纶纤维在丁羟橡胶中的应用[J].火炸药学报,2007,30(1):21.
[4]李春迎,王 宏,孙 美,等.遥感FTIR光谱技术在固体推进剂羽焰测试中的应用[J].火炸药学报,2007,30(1):28.
[5]杜美娜,罗运军.RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36.
[6]王国栋,刘玉存.神经网络在炸药晶体密度预测中的应用[J].火炸药学报,2007,30(1):57.
[7]周诚,黄新萍,周彦水,等.FOX-7的晶体结构和热分解特性[J].火炸药学报,2007,30(1):60.
[8]张秋越,孟子晖,肖小兵,等.用分子烙印聚合物吸附溶液中的TNT[J].火炸药学报,2007,30(1):64.
[9]崔建兰,张 漪,曹端林.三羟甲基丙烷三硝酸酯的热分解性能[J].火炸药学报,2007,30(1):71.
[10]李进华,孙兆懿.四氧化二氮胶体饱和蒸气压的测试及分析[J].火炸药学报,2007,30(1):74.

备注/Memo

收稿日期:2019-09-12; 修回日期:2019-12-19
基金项目:浙江省大学生科技创新项目(No.2019R403024); 浙江省自然科学基金项目(No.LQ16E040002)
作者简介:成健(1982-),男,讲师,从事高能钝感炸药和固体推进剂含能燃烧催化剂研究。E-mail:chengjian09@foxmail.com
通信作者:刘祖亮(1951-),男,研究员,从事含能材料研究。E-mail: njustlzl723@hotmail.com

更新日期/Last Update: 2020-05-13


@Copyright 西安近代化学研究所(中国兵器工业第204研究所)  陕ICP备14002633号-2
地址:西安市18号信箱《火炸药学报》编辑部   联系电话:029-88291297   邮箱:hzyxb@204s.com