[1]杨伟涛,肖 霞,胡 睿,等.增材制造技术在火炸药成型中的研究进展[J].火炸药学报,2020,43(1):1-11.[doi:10.14077/j.issn.1007-7812.201907033]
 YANG Wei-tao,XIAO Xia,HU Rui,et al.Developments of Additive Manufacture Technology in Propellants, Explosives and Pyrotechnics[J].,2020,43(1):1-11.[doi:10.14077/j.issn.1007-7812.201907033]
点击复制

增材制造技术在火炸药成型中的研究进展

参考文献/References:

[1] 王泽山. 含能材料概论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006.
[2]李凤生, 郭效德, 刘冠鹏. 新型火药设计与制造[M].北京:国防工业出版社,2008.
[3]JACOBS P F. Stereolithography and Other RP&M Technologies: From Rapid Prototyping to Rapid Tooling[M]. USA: Society of Manufacturing Engineers, 1995.
[4]JACOBS P F. Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography[M]. USA: Mc Graw-Hill Inc, 1993.
[5]CHUA C K, LEONG K F, LIM C S. Rapid Prototyping: Principles and Applications(with companion CD-ROM)[M]. Singapore: World Scientific Publishing Company, 2010.
[6]CAFFREY T. Additive manufacturing and 3D printing state of the industry annual worldwide progress report[J]. Engineering Management Research, 2013, 2(1): 209-222.
[7]PHAM D T, GAULT R S. A comparison of rapid prototyping technologies[J]. International Journal of Machine Tools and Manufacture, 1998, 38(10/11): 1257-1287.
[8]WENDEL B, RIETZEL D, KüHNLEIN F, et al. Additive processing of polymers[J]. Macromolecular Materials and Engineering, 2008, 293(10): 799-809.
[9]GILL S S, KAPLAS M. Efficacy of powder-based three-dimensional printing(3DP)technologies for rapid casting of light alloys[J]. The International Journal of Adnovanced Manufacturing Techlogy, 2011, 52(1/4): 53-64.
[10]梓文. 澳大利亚国防科学技术(DST)集团的增材制造含能材料[J]. 兵器材料科学与工程, 2018, 41(2): 15.
[11]BENDER D, FONG R, NG W, et al. Dual mode warhead technology for future smart munitions[C]∥Proceedings of the 19th International Symposium of Ballistics. Interlaken:IRC, 2001.
[12]张洪林, 刘宝民, 马新安, 等. 基于3D打印技术的发射药燃烧增面设计[J]. 含能材料, 2016, 24(5): 491-496.
ZHANG H, LIU B, MA X, et al. Design of increased burning area of propellant based on 3D printing technology[J]. Chinese Journal of Energetic Materials, 2016, 24(5): 491-496.
[13]YANG W, LI Y, YING S. An investigation of the preparation and performance of microcellular combustible material[J]. Central European Journal of Energetic Materials, 2014, 11(2): 257-269.
[14]YANG W, LI Y, YING S. Fabrication, thermoanalysis, and performance evaluation studies on RDX-based microcellular combustible objects[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4): 568-573.
[15]YANG W, LI Y, YING S. Fabrication of graded porous and skin-core structure RDX-based propellants via supercritical CO2 concentration profile[J]. Journal of Energetic Materials, 2015, 33(2): 91-101.
[16]朱珠, 雷林, 罗向东, 等. 含能材料 3D 打印技术及应用现状研究[J]. 兵工自动化, 2015, 34(6): 52-55.
ZHU Zhu, LEI Lin, LUO Xiang-dong, et al. Research on application of 3D printing technology of energetic materials[J]. Ordnance Industry Automation, 2015, 34(6): 52-55.
[17]WANG X, JIANG M, ZHOU Z, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B: Engineering, 2017, 110: 442-458.
[18]LIGON S C, LISKA R, STAMPFL J, et al. Polymers for 3D printing and customized additive manufacturing[J]. Chemical Reviews, 2017, 117(15): 10212-10290.
[19]ALLEN R R. Thermodynamics and hydrodynamics of thermal ink jets[J]. HP Journal, 1985: 21-27.
[20]YAMANE M, KAWAGUCHI T. Apparatus for forming three-dimensional article: US, 5140937[P]. 1992-8-25.
[21]PENN S M. System, method, and process for making three-dimensional objects: US, 5260009[P]. 1993-11-9.
[22]COMB J, DOCKTER S E, BERENS P A. Rapid prototyping apparatus: US, 5939008[P]. 1999-8-17.
[23]NAPADENSKY E, KRITCHMAN E M, COHEN A. Compositions and methods for use in three dimensional model printing: US, 7300619[P]. 2007-11-27.
[24]DIKOVSKY D, NAPADENSKY E. Three-dimensional printing process for producing a self-destructible temporary structure: US, 8470231[P]. 2013-6-25.
[25]DIMITROV D, SCHREVE K, DE BEER N. Advances in three dimensional printing-state of the art and future perspectives[J]. Rapid Prototyping Journal, 2006, 12(3): 136-147.
[26]KAWASE T, SHIMODA T, NEWSOME C, et al. Inkjet printing of polymer thin film transistors[J]. Thin Solid Films, 2003, 438: 279-287.
[27]WANG J Z, GU J, ZENHAUSERN F, et al. Low-cost fabrication of submicron all polymer field effect transistors[J]. Applied Physics Letters, 2006, 88(13): 133502.
[28]DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Contact line deposits in an evaporating drop[J]. Physical Review E, 2000, 62(1): 756.
[29]DEEGAN R D. Pattern formation in drying drops[J]. Physical Review E, 2000, 61(1): 475.
[30]HON K K B, LI L, HUTCHINGS I M. Direct writing technology-advances and developments[J]. CIRP Annals, 2008, 57(2): 601-620.
[31]张金勇. 异形结构传爆药装药工艺研究[D]. 太原: 中北大学, 2006.
[32]王景龙. 3DP炸药油墨配方设计及制备技术[D]. 太原: 中北大学, 2015.
[33]WANG D, ZHENG B, GUO C, et al. Formulation and performance of functional sub-micro CL-20-based energetic polymer composite ink for direct-write assembly[J]. RSC Advances, 2016, 6(113): 112325-112331.
[34]WINDSOR E, NAJARRO M, BLOOM A, et al. Application of inkjet printing technology to produce test materials of 1, 3, 5-trinitro-1, 3, 5 triazcyclohexane for trace explosive analysis[J]. Analytical Chemistry, 2010, 82(20): 8519-8524.
[35]CHRISEY D B, PIQUÉ A. Direct-write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources[M]. San Diego:San Diego Academic Press, 2002.
[36]WINDSOR E, NAJARRO M, BLOOM A, et al. Application of inkjet printing technology to produce test materials of 1, 3, 5-trinitro-1, 3, 5 triazcyclohexane for trace explosive analysis[J]. Analytical Chemistry, 2010, 82(20): 8519-8524.
[37]FLETCHER R A, BRAZIN J A, Staymates M E, et al. Fabrication of polymer microsphere particle standards containing trace explosives using an oil/water emulsion solvent extraction piezoelectric printing process[J]. Talanta, 2008, 76(4): 949-955.
[38]IHNEN A C, PETROCK A M, CHOU T, et al. Crystal morphology variation in inkjet-printed organic materials[J]. Applied Surface Science, 2011, 258(2): 827-833.
[39]IHNEN A C, PETROCK A M, CHOU T, et al. Organic nanocomposite structure tailored by controlling droplet coalescence during inkjet printing[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4691-4699.
[40]YUNKER P J, STILL T, LOHR M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature, 2011, 476(7360): 308.
[41]SOLTMAN D, SUBRAMANIAN V. Inkjet-printed line morphologies and temperature control of the coffee ring effect[J]. Langmuir, 2008, 24(5): 2224-2231.
[42]ZHANG Z, ZHANG X, XIN Z, et al. Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee‐ring effect[J]. Advanced Materials, 2013, 25(46): 6714-6718.
[43]LI Y F, SHENG Y J, TSAO H K. Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis[J]. Langmuir, 2013, 29(25): 7802-7811.
[44]PRICE D, ERKMAN J O, CLAIRMONT Jr A R, et al. Explosive characterization of dinitrotoluene[J]. Combustion and Flame, 1970, 14(1): 145-148.
[45]BOCKSTEINER G, WOLFSON M G, WHELAN D J. The critical diameter, detonation velocity and shock sensitivity of Australian PBXW-115[R]. AUSTRALIA, Defence Science and Techonology Organization Canberra, 1994.
[46]WALLEY S M, FIELD J E, GREENAWAY M W. Crystal sensitivities of energetic materials[J]. Materials Science and Technology, 2006, 22(4): 402-413.
[47]van der HEIJDEN A E D M, BOUMA R H B, van der STEEN A C. Physicochemical parameters of nitramines influencing shock sensitivity[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(5): 304-313.
[48]STEPANOV V. Production of nanocrystalline RDX by RESS: Process development and material characterization[D]. New Jersey: New Jersey Institute of Technology, 2008.
[49]QIU H, STEPANOV V, DI STASIO A R, et al. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity[J]. Journal of Hazardous Materials, 2011, 185(1): 489-493.
[50]张宝坪, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2001.
[51]IHNEN A, LEE W, FUCHS B, et al. Inkjet printing of nanocomposite high-explosive materials for direct write fuzing[C]∥54th Fuze Conference. Kansas City: MO, 2010: 11-13.
[52]汝承博, 张晓婷, 叶迎华, 等. 用于喷墨打印微装药方法的纳米铝热剂含能油墨研究[J]. 火工品, 2013(4): 33-36.
RU Cheng-bo, ZHANG Xiao-ting, YE Ying-hua, et al. Study on nano-thermite energetic material for Inkjet printing micro-charge method[J]. Initiators & Pyrotechnics, 2013(4): 33-36.
[53]朱自强, 陈瑾, 谯志强, 等. CL-20基直写炸药油墨的制备与表征[J]. 含能材料, 2013, 21(2): 235-238.
ZHU Zi-qiang, CHEN Jing, QIQO Zhiq-iang, et al. Preparation and characterization of direct write explosive lnk based on CL-20[J]. Chinese Journal of Energetic Materials, 2013, 21(2): 235-238.
[54]张晓婷. 用于喷墨打印快速成型技术的纳米铝热剂含能油墨研究[D]. 南京: 南京理工大学, 2013.
[55]朱珠, 雷林, 罗向东, 等. 含能材料 3D 打印技术及应用现状研究[J]. 兵工自动化, 2015, 34(6): 52-55.
ZHU Zhu, LEI Lin, LUO Xiang-dong, et al. Research on application of 3D printing technology of energetic materials[J]. Ordnance Industry Automation, 2015, 34(6): 52-55.
[56]姚艺龙, 吴立志, 唐乐, 等. 纳米 CL-20 炸药含能墨水的直写规律[J]. 火炸药学报, 2016, 39(1): 39-42.
YAO Yi-long, WU Li-zhi, TANG Le, et al. Direct writing rule of nano CL-20 explosive energetic ink[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2016, 39(1): 39-42.
[57]徐传豪, 安崇伟, 武碧栋, 等. CL-20 基炸药油墨的直写成型及性能研究[J]. 火工品, 2018(1): 10.
XU Chuan-hao, AN Chong-wei, WU Bi-dong, et al. Performances and direct writing of CL-20 based explosive ink[J]. Initiators & Pyrotechnics, 2018(1): 10.
[58]SCHMIDT K A, DOAN V A, XU P, et al. Ultra-violet light curable hot melt composition: US, 6841589[P]. 2005-1-11.
[59]许迪. 化学芯片的快速成型技术研究[D]. 南京: 南京理工大学, 2004.
[60]朱锦珍. 含能芯片的快速成型技术研究[D]. 南京: 南京理工大学, 2005.
[61]王建. 化学芯片的喷墨快速成型技术研究[D]. 南京: 南京理工大学, 2006.
[62]邢宗仁. 含能材料三维打印快速成形技术研究[D]. 南京: 南京理工大学, 2012.
[63]刘毅, 郑保辉, 李显寅, 等. CL-20 基炸药墨水直写沉积规律[J]. 含能材料, 2017, 25(9): 738-744.
LIU Yi, ZHENG Bao-hui, LI Xian-yin, et al. Direct writing deposition rule of CL-20 based explosive Ink[J]. Chinese Journal of Energetic Materials, 2017, 25(9): 738-744.
[64]PANWAR A, TAN L. Current status of bioinks for micro-extrusion-based 3D bioprinting[J]. Molecules, 2016, 21(6): 685.
[65]NATHAN-WALLESER T, LAZAR I M, FABRITIUS M, et al. 3D micro-extrusion of graphene-based active electrodes: towards high‐rate AC line filtering performance electrochemical capacitors[J]. Advanced Functional Materials, 2014, 24(29): 4706-4716.
[66]ANG T H, SULTANA F S A, HUTMACHER D W, et al. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system[J]. Materials Science and Engineering: C, 2002, 20(1-2): 35-42.
[67]LANDERS R, HÜBNER U, SCHMELZEJSEN R, et al. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering[J]. Biomaterials, 2002, 23(23): 4437-4447.
[68]OH C H, HONG S J, JEONG I, et al. Development of robotic dispensed bioactive scaffolds and human adipose-derived stem cell culturing for bone tissue engineering[J]. Tissue Engineering Part C: Methods, 2009, 16(4): 561-571.
[69]AGARWALA M K, JAMALABAD V R, LANGRANA N A, et al. Structural quality of parts processed by fused deposition[J]. Rapid Prototyping Journal, 1996, 2(4): 4-19.
[70]AHN D, KWEON J H, KWON S, et al. Representation of surface roughness in fused deposition modeling[J]. Journal of Materials Processing Technology, 2009, 209(15-16): 5593-5600.
[71]LEE C S, KIM S G, KIM H J, et al. Measurement of anisotropic compressive strength of rapid prototyping parts[J]. Journal of Materials Processing Technology, 2007, 187: 627-630.
[72]SOOD A K, OHDAR R K, MAHAPATRA S S. Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method[J]. Materials & Design, 2009, 30(10): 4243-4252.
[73]THRIMURTHULU K, PANDEY P M, REDDY N V. Optimum part deposition orientation in fused deposition modeling[J]. International Journal of Machine Tools and Manufacture, 2004, 44(6): 585-594.
[74]AHN S H, MENTERO M, ODELL D, et al. Anisotropic material properties of fused deposition modeling ABS[J]. Rapid Prototyping Journal, 2002, 8(4): 248-257.
[75]DUDEK P. FDM 3D printing technology in manufacturing composite elements[J]. Archives of Metallurgy and Materials, 2013, 58(4): 1415-1418.
[76]ARMOLD D, BOYER J E, Kuo K, et al. Test of hybrid rocket fuel grains with swirl patterns fabricated using rapid prototyping technology[C]∥49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. California: American Institute of Aeronautics and Astronautics, 2013: 4141.
[77]DEGGES M J, TARASCHI P, SYPHERS J, et al. Student investigation of rapid prototyping technology for hybrid rocket motor fuel grains[C]∥49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. California: American Institute of Aeronautics and Astronautics, 2013: 4016.
[78]VAN DRIEL C, STRAATHOF M, VAN LINGEN J. Developments in additive manufacturing of energetic materials at TNO[C]∥30th International Symposium on Ballistics. Long Beach: DEStech Publications, 2017:862-875.
[79]Joost van Lingen M S, Chris van driel and arjan den Otter. 3D printing of gun propellants[C]∥Proceedings of the 43rd International Pyrotechnics Society Seminar. Colorado: Fort Collins, 2018: 129-141.
[80]肖磊, 王庆华, 李万辉, 等. 基于三维打印技术的纳米奥克托今与梯恩梯熔铸炸药制备及性能研究[J]. 兵工学报, 2018: 1291-1298.
XIAO Lei, WANG Qing-hua, LI Wan-hui, et al. Preparation and performances of nano-HMX and TNT melt-cast explosives based on 3D printing technology[J]. Acta Armamentarii, 2018: 1291-1298.
[81]SCHEITHAUER U, SCHWARZER E, RICHTER H J, et al. Thermoplastic 3D printing-an additive manufacturing method for producing dense ceramics[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 26-31.
[82]MUTHIAH R M, KRISHNAMURTHY V N, GUPTA B R. Rheology of HTPB propellant. I. Effect of solid loading, oxidizer particle size, and aluminum content[J]. Journal of Applied Polymer Science, 1992, 44(11): 2043-2052.
[83]NAIR C P R, PRASAD C H D V, NINAN K N. Effect of process parameters on the viscosity of AP/Al/HTPB based solid propellant slurry[J]. Journal of Energy and Chemical Engineering, 2013,1: 1-9.
[84]SANGHAVI R R, KAMALE P J, SHAIKH M A R, et al. HMX based enhanced energy LOVA gun propellant[J]. Journal of Hazardous Materials, 2007, 143(1-2): 532-534.
[85]刘斌, 谢毅. 熔融沉积快速成型系统喷头应用现状分析[J]. 工程塑料应用, 2008, 36(12): 68-71.
LIU Bin, XIE Yi. Analysis on application status for the spray head of fused deposition modeling system[J]. Engineering Plastics Application, 2008, 36(12): 68-71.
[86]陆星宇, 樊黎霞, 丁骁垚. 结合熵权TOPSIS的FDM成型工艺参数多目标优化研究[J]. 机械科学与技术, 2017, 36(11): 1715-1721.
LU Xing-yu, FAN Li-xia, DING Xiao-yao. Multi objective optimization of processing parameters in FDM based on entropy-weight TOPSIS model[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11): 1715-1721.
[87]丁骁垚,含能材料3D打印实验系统喷头的设计和分析[D]. 南京: 南京理工大学, 2017.
[88]MCCLAIN M S, GUNDUZ I E, SON S F. Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3135-3142.
[89]YI J H, ZHAO F Q, HU R Z, et al. Thermal safety study on TEGDN/NG/NC gun propellant[J]. Journal of Energetic Materials, 2010, 28(4): 285-298.
[90]MUELLER D. New Gun Propellant with CL-20[J]. Propellants, Explosives, Pyrotechnics, 1999, 24(3): 176-181.
[91]孙义龙. 溶剂法含能材料增材制造试验系统中材料的工艺适应性研究[D]. 南京: 南京理工大学, 2017.
[92]CHANDRU R A, BALASUBRAMANIAN N, and Oommen. C, Additive manufacturing of solid rocket propellant grains[J]. Journal of Propulsion and Power, 2018. 34(4): 1090-1093.
[93]VAEZI M, SEITZ H, YANG S. A review on 3D micro-additive manufacturing technologies[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5-8): 1721-1754.
[94]TESAVIBUL P, FELZMANN R, GRUBER S, et al. Processing of 45S5 Bioglass R by lithography-based additive manufacturing[J]. Materials Letters, 2012, 74: 81-84.
[95]杨伟涛, 刘哲, 张玉成, 等. 泡沫发射药能量特性计算与分析[J]. 含能材料, 2017, 25(9): 726-731.
YANG Wei-tao, LIU Zhe, ZHANG Yu-cheng, et al. Calculation and analysis on energy characteristics of foamed propellant[J]. Chinese Journal of Energetic Materials, 2017, 25(9): 726-731.
[96]王泽山. 火药装药设计原理[M]. 北京: 兵器工业出版社, 1995.
[97]胡睿, 杨伟涛, 姜再兴, 等.一种基于光聚合固化成型发射药3D打印方法[J/OL].火炸药学报,https:∥doi.org/10.14077/j.issn.1007-7812.201909033.
HU Rui, YANG Wei-tao, JIANG Zai-xing, et al. 3D printing method of gun propellants based on vat photopolymerization [J/OL]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao):https:∥doi.org/10.14077/j.issn.1007-7812.201909033.

相似文献/References:

[1]杨伟涛,肖霞,胡睿,等.增材制造技术在火炸药成型中的研究进展[J].火炸药学报,2020,43(预出版):1.[doi:10.14077/ j.issn.1007-7812.201907033]
 YANG Wei-tao,XIAO Xia,HU Rui,et al.Developments of Additive Manufacture Technology in Propellants, Explosives and Pyrotechnics[J].,2020,43(1):1.[doi:10.14077/ j.issn.1007-7812.201907033]
[2]胡睿,杨伟涛*,姜再兴,等.一种基于光聚合固化成型发射药3D打印方法[J].火炸药学报,2020,43(预出版):1.[doi:10.14077/ j.issn.1007-7812.201909033]

备注/Memo

收稿日期:2019-07-23; 修回日期:2019-08-23
基金项目:国家安全重大基础研究项目
作者简介:杨伟涛(1987-),男,副研究员,从事含能材料在发射药中的应用研究。E-mail:njyangewitao@163.com
通信作者:王琼林(1966-),男,研究员,从事发射药及装药技术研究。E-mail:wangqionglin356@126.com

更新日期/Last Update: 2020-03-26


@Copyright 西安近代化学研究所(中国兵器工业第204研究所)  陕ICP备14002633号-2
地址:西安市18号信箱《火炸药学报》编辑部   联系电话:029-88291297   邮箱:hzyxb@204s.com