[1]杨伟涛,肖霞,胡睿,等.增材制造技术在火炸药成型中的研究进展[J].火炸药学报,2020,43(预出版):1-15.[doi:10.14077/ j.issn.1007-7812.201907033]
 YANG Wei-tao,XIAO Xia,HU Rui,et al.Developments of Additive Manufacture Technology in Propellants, Explosives and Pyrotechnics[J].,2020,43(预出版):1-15.[doi:10.14077/ j.issn.1007-7812.201907033]
点击复制

增材制造技术在火炸药成型中的研究进展

参考文献/References:

[1] 王泽山. 含能材料概论[M]. 哈尔滨工业大学出版社, 2006.
[2] 李凤生, 郭效德, 刘冠鹏. 新型火药设计与制造[M].国防工业出版社,2008.
[3] Fedchenko F, Jacobs P F. ‘Stereolithography and other RP&M Technologies[J]. Fedchenko, RP, Jacobs, PF, Eds, 1996: 1.
[4] Jacobs P F. Rapid prototyping & manufacturing: fundamentals of stereolithography[M]. Society of Manufacturing Engineers, 1992.
[5] Chua C K, Leong K F, Lim C S. Rapid prototyping: principles and applications (with companion CD-ROM)[M]. World Scientific Publishing Company, 2010.
[6] Caffrey T. Additive manufacturing and 3D printing state of the industry annual worldwide progress report[J]. Engineering Management Research, 2013, 2(1): 209-222.
[7] Pham D T, Gault R S. A comparison of rapid prototyping technologies[J]. International Journal of machine tools and manufacture, 1998, 38(10-11): 1257-1287.
[8] Wendel B, Rietzel D, Kühnlein F, et al. Additive processing of polymers[J]. Macromolecular materials and engineering, 2008, 293(10): 799-809.
[9] Gill S S, Kaplas M. Efficacy of powder-based three-dimensional printing (3DP) technologies for rapid casting of light alloys[J]. The International Journal of Advanced Manufacturing Technology, 2011, 52(1-4): 53-64.
[10] 梓文. 澳大利亚国防科学技术 (DST) 集团的增材制造含能材料[J]. 兵器材料科学与工程, 2018, 41(2): 15-15.
[11] Bender D, Fong R, Ng W, et al. Dual mode warhead technology for future smart munitions[C].Proceedings of the 19th International Symposium of Ballistics, Interlaken, Switzerland. 2001.
[12] 张洪林, 刘宝民, 马新安, 等. 基于3D打印技术的发射药燃烧增面设计[J]. 含能材料, 2016, 24(5): 491-496.
[13] Yang W, Li Y, Ying S. An investigation of the preparation and performance of microcellular combustible material[J]. Central European Journal of Energetic Materials, 2014, 11.
[14] Yang W, Li Y, Ying S. Fabrication, Thermoanalysis, and Performance Evaluation Studies on RDX-based Microcellular Combustible Objects[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4): 568-573.
[15] Yang W, Li Y, Ying S. Fabrication of graded porous and skin-core structure RDX-based propellants via supercritical CO2 concentration profile[J]. Journal of Energetic Materials, 2015, 33(2): 91-101.
[16] 朱珠, 雷林, 罗向东, 等. 含能材料 3D 打印技术及应用现状研究[J]. 兵工自动化, 2015, 34(6): 52-55.
[17] ASTM Committee F42 on Additive Manufacturing Technologies, ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42. 91 on Terminology. Standard terminology for additive manufacturing technologies[M]. ASTM International, 2012.
[18] Ligon S C, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing[J]. Chemical reviews, 2017, 117(15): 10212-10290.
[19] Allen R R. Thermodynamics and hydrodynamics of thermal ink jets[J]. HP Journal, 1985: 21-27.
[20] Yamane M, Kawaguchi T. Apparatus for forming three-dimensional article: U.S. Patent 5,140,937[P]. 1992-8-25.
[21] Penn S M. System, method, and process for making three-dimensional objects: U.S. Patent 5,260,009[P]. 1993-11-9.
[22] Comb J, Dockter S E, Berens P A. Rapid prototyping apparatus: U.S. Patent 5,939,008[P]. 1999-8-17.
[23] Napadensky E, Kritchman E M, Cohen A. Compositions and methods for use in three dimensional model printing: U.S. Patent 7,300,619[P]. 2007-11-27.
[24] Dikovsky D, Napadensky E. Three-dimensional printing process for producing a self-destructible temporary structure: U.S. Patent 8,470,231[P]. 2013-6-25.
[25] Dimitrov D, Schreve K, de Beer N. Advances in three dimensional printing–state of the art and future perspectives[J]. Rapid Prototyping Journal, 2006, 12(3): 136-147.
[26] Kawase T, Shimoda T, Newsome C, et al. Inkjet printing of polymer thin film transistors[J]. Thin solid films, 2003, 438: 279-287.
[27] Wang J Z, Gu J, Zenhausern F, et al. Low-cost fabrication of submicron all polymer field effect transistors[J]. Applied Physics Letters, 2006, 88(13): 133502.
[28] Deegan R D, Bakajin O, Dupont T F, et al. Contact line deposits in an evaporating drop[J]. Physical review E, 2000, 62(1): 756.
[29] Deegan R D. Pattern formation in drying drops[J]. Physical review E, 2000, 61(1): 475.
[30] Hon K K B, Li L, Hutchings I M. Direct writing technology—Advances and developments[J]. CIRP Annals, 2008, 57(2): 601-620.
[31] 张金勇. 异形结构传爆药装药工艺研究[D]. 太原: 中北大学, 2006.
[32] 王景龙. 3DP炸药油墨配方设计及制备技术[D]. 太原: 中北大学, 2015.
[33] Fuchs B E, Wilson A, Cook P, et al. Development, performance and use of direct write explosive inks[C]. Proc. 14th Int. Det. Symp. 2010.
[34] Windsor E, Najarro M, Bloom A, et al. Application of inkjet printing technology to produce test materials of 1, 3, 5-trinitro-1, 3, 5 triazcyclohexane for trace explosive analysis[J]. Analytical chemistry, 2010, 82(20): 8519-8524.
[35] Chrisey, D. B., Piqué, A. (Eds.) Direct-write technologies for rapid prototyping applications: sensors, electronics, and integrated power sources[M]. Elsevier, 2001.
[36] Windsor E, Najarro M, Bloom A, et al. Application of inkjet printing technology to produce test materials of 1, 3, 5-trinitro-1, 3, 5 triazcyclohexane for trace explosive analysis[J]. Analytical chemistry, 2010, 82(20): 8519-8524.
[37] Fletcher R A, Brazin J A, Staymates M E, et al. Fabrication of polymer microsphere particle standards containing trace explosives using an oil/water emulsion solvent extraction piezoelectric printing process[J]. Talanta, 2008, 76(4): 949-955.
[38] Ihnen A C, Petrock A M, Chou T, et al. Crystal morphology variation in inkjet-printed organic materials[J]. Applied Surface Science, 2011, 258(2): 827-833.
[39] Ihnen A C, Petrock A M, Chou T, et al. Organic nanocomposite structure tailored by controlling droplet coalescence during inkjet printing[J]. ACS applied materials & interfaces, 2012, 4(9): 4691-4699.
[40] Yunker P J, Still T, Lohr M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature, 2011, 476 (7360): 308.
[41] Soltman D, Subramanian V. Inkjet-printed line morphologies and temperature control of the coffee ring effect[J]. Langmuir, 2008, 24(5): 2224-2231.
[42] Zhang Z, Zhang X, Xin Z, et al. Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee‐ring effect[J]. Advanced Materials, 2013, 25(46): 6714-6718.
[43] Li Y F, Sheng Y J, Tsao H K. Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis[J]. Langmuir, 2013, 29(25): 7802-7811.
[44] Price D, Erkman J O, Clairmont Jr A R, et al. Explosive characterization of dinitrotoluene[J]. Combustion and Flame, 1970, 14(1): 145-148.
[45] Bocksteiner G, Wolfson M G, Whelan D J. The critical diameter, detonation velocity and shock sensitivity of Australian PBXW-115[R]. Defence Science and Techonology Organization Canberra (AUSTRALIA), 1994.
[46] Walley S M, Field J E, Greenaway M W. Crystal sensitivities of energetic materials[J]. Materials Science and Technology, 2006, 22(4): 402-413.
[47] van der Heijden A E D M, Bouma R H B, van der Steen A C. Physicochemical parameters of nitramines influencing shock sensitivity[J]. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 2004, 29(5): 304-313.
[48] Stepanov V. Production of nanocrystalline RDX by RESS: Process development and material characterization[D]. New Jersey Institute of Technology, 2008.
[49] Qiu H, Stepanov V, Di Stasio A R, et al. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity[J]. Journal of hazardous materials, 2011, 185(1): 489-493.
[50] 张宝坪, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2001.
[51] Ihnen A, Lee W, Fuchs B, et al. Inkjet printing of nanocomposite high-explosive materials for direct write fuzing[C]. 54th Fuze Conference, Kansas City, MO, May. 2010: 11-13.
[52] 汝承博, 张晓婷, 叶迎华, 等. 用于喷墨打印微装药方法的纳米铝热剂含能油墨研究[J]. 火工品, 2013 (4): 33-36.
[53] 朱自强, 陈瑾, 谯志强, 等. CL-20基直写炸药油墨的制备与表征[J]. 含能材料, 2013, 21(2): 235-238.
[54] 张晓婷. 用于喷墨打印快速成型技术的纳米铝热剂含能油墨研究[D]. 南京: 南京理工大学, 2013.
[55] 朱珠, 雷林, 罗向东, 等. 含能材料 3D 打印技术及应用现状研究[J]. 兵工自动化, 2015, 34(6): 52-55.
[56] 姚艺龙, 吴立志, 唐乐, 等. 纳米 CL-20 炸药含能墨水的直写规律[J]. 火炸药学报, 2016, 39(1): 39-42.
[57] 徐传豪, 安崇伟, 武碧栋, 等. CL-20 基炸药油墨的直写成型及性能研究[J]. 火工品, 2018 (1): 10.
[58] Schmidt K A, Doan V A, Xu P, et al. Ultra-violet light curable hot melt composition: U.S. Patent 6,841, 589[P]. 2005-1-11.
[59] 许迪. 化学芯片的快速成型技术研究[D]. 南京: 南京理工大学, 2004.
[60] 朱锦珍. 含能芯片的快速成型技术研究[D]. 南京: 南京理工大学, 2005.
[61] 王建. 化学芯片的喷墨快速成型技术研究[J]. 南京: 南京理工大学, 2006.
[62] 邢宗仁. 含能材料三维打印快速成形技术研究[D]. 南京: 南京理工大学, 2012.
[63] 刘毅, 郑保辉, 李显寅, 等. CL-20 基炸药墨水直写沉积规律[J]. 含能材料, 2017, 25(9): 738-744.
[64] Panwar A, Tan L. Current status of bioinks for micro-extrusion-based 3D bioprinting[J]. Molecules, 2016, 21(6): 685.
[65] Nathan-Walleser T, Lazar I M, Fabritius M, et al. 3D Micro-Extrusion of Graphene-based Active Electrodes: Towards High‐Rate AC Line Filtering Performance Electrochemical Capacitors[J]. Advanced Functional Materials, 2014, 24(29): 4706-4716.
[66] Ang T H, Sultana F S A, Hutmacher D W, et al. Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system[J]. Materials science and engineering: C, 2002, 20(1-2): 35-42.
[67] Landers R, Hübner U, Schmelzeisen R, et al. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering[J]. Biomaterials, 2002, 23(23): 4437-4447.
[68] Oh C H, Hong S J, Jeong I, et al. Development of robotic dispensed bioactive scaffolds and human adipose–derived stem cell culturing for bone tissue engineering[J]. Tissue Engineering Part C: Methods, 2009, 16(4): 561-571.
[69] Agarwala M K, Jamalabad V R, Langrana N A, et al. Structural quality of parts processed by fused deposition[J]. Rapid prototyping journal, 1996, 2(4): 4-19.
[70] Ahn D, Kweon J H, Kwon S, et al. Representation of surface roughness in fused deposition modeling[J]. Journal of Materials Processing Technology, 2009, 209(15-16): 5593-5600.
[71] Lee C S, Kim S G, Kim H J, et al. Measurement of anisotropic compressive strength of rapid prototyping parts[J]. Journal of materials processing technology, 2007, 187: 627-630.
[72] Sood A K, Ohdar R K, Mahapatra S S. Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method[J]. Materials & Design, 2009, 30(10): 4243-4252.
[73] Thrimurthulu K, Pandey P M, Reddy N V. Optimum part deposition orientation in fused deposition modeling[J]. International Journal of Machine Tools and Manufacture, 2004, 44(6): 585-594.
[74] Ahn S H, Montero M, Odell D, et al. Anisotropic material properties of fused deposition modeling ABS[J]. Rapid prototyping journal, 2002, 8(4): 248-257.
[75] L Lombardi J, Artz G J, Popovich D, et al. Issues Associated with the Development of a Water Soluble Support Material for use in Extrusion Freeforming & Fused Depositon Modeling[C]. 1998 International Solid Freeform Fabrication Symposium. 1998: 511?517.
[76] Armold D, Boyer J E, Kuo K, et al. Test of hybrid rocket fuel grains with swirl patterns fabricated using rapid prototyping technology[M]. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 2013: 4141.
[77] Degges M J, Taraschi P, Syphers J, et al. Student investigation of rapid prototyping technology for hybrid rocket motor fuel grains[M]. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 2013:  4016.
[78] VAN DRIEL C, STRAATHOF M, VAN LINGEN J. Developments in Additive Manufacturing of Energetic Materials at TNO[C]. 30th International Symposium on Ballistics. 2017.
[79] Joost van Lingen M.S., Chris van Driel and Arjan den Otter. 3D printing of Gun Propellants[M]. Proceedings of the 43rd International Pyrotechnics Society Seminar: Fort Collins, Colorado, USA, July 8-13, 2018, 129-141.
[80] 肖磊, 王庆华, 李万辉, 等. 基于三维打印技术的纳米奥克托今与梯恩梯熔铸炸药制备及性能研究[J]. 兵工学报, 2018: 1291-1298.
[81] Scheithauer U, Schwarzer E, Richter H J, et al. Thermoplastic 3D printing-an additive manufacturing method for producing dense ceramics[J]. International journal of applied ceramic technology, 2015, 12(1): 26-31.
[82] Muthiah R M, Krishnamurthy V N, Gupta B R. Rheology of HTPB propellant. I. Effect of solid loading, oxidizer particle size, and aluminum content[J]. Journal of Applied Polymer Science, 1992, 44(11): 2043-2052.
[83] Nair C P R, Prasad C H D V, Ninan K N. Effect of process parameters on the viscosity of AP/Al/HTPB based solid propellant slurry[J]. Journal of Energy and Chemical Engineering, 2013.
[84] Sanghavi R R, Kamale P J, Shaikh M A R, et al. HMX based enhanced energy LOVA gun propellant[J]. Journal of hazardous materials, 2007, 143(1-2): 532-534.
[85] 刘斌, 谢毅. 熔融沉积快速成型系统喷头应用现状分析[J]. 工程塑料应用, 2008, 36(12): 68-71.
[86] 陆星宇, 樊黎霞, 丁骁垚. 结合熵权TOPSIS的FDM成型工艺参数多目标优化研究[J]. 机械科学与技术, 2017, 36(11): 1715-1721.
[87] 丁骁垚,含能材料3D打印实验系统喷头的设计和分析[D],南京: 南京理工大学, 2017.
[88] McClain M S, Gunduz I E, Son S F. Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3135-3142.
[89] 王泽山. 含能材料和含能材料学科的进展 (1)[J]. 化工时刊, 1995, 7: 4-9.
[90] 王泽山. 含能材料和含能材料学科的进展 (3)[J]. 化工时刊, 1995, 9: 10-15.
[91] 孙义龙. 溶剂法含能材料增材制造试验系统中材料的工艺适应性研究[D]. 南京: 南京理工大学, 2017.
[92] R.A. Chandru , N.B., V. Natarajan , C. Oommen , B.N. Raghunandan , V.R. Sanal Kumar , P. Murugesh , 53rd AIAA/SAE/ASEE Joint Propulsion Conference , American Institute of Aeronautics and Astronautics, 2017 .
[93] Vaezi M, Seitz H, Yang S. A review on 3D micro-additive manufacturing technologies[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5-8): 1721-1754.
[95] Tesavibul P, Felzmann R, Gruber S, et al. Processing of 45S5 Bioglass? by lithography-based additive manufacturing[J]. Materials Letters, 2012, 74: 81-84.
[96] 杨伟涛, 刘哲, 张玉成, 等. 泡沫发射药能量特性计算与分析[J]. 含能材料, 2017, 25(9): 726-731.
[97] 王泽山. 火药装药设计原理[M]. 北京: 兵器工业出版社, 1995。

相似文献/References:

[1]萧忠良.武器信息化条件下火炸药发展策略分析[J].火炸药学报,2007,30(1):1.
[2]俞统昌,王晓峰,王建灵.火炸药危险等级分级程序分析[J].火炸药学报,2006,29(1):10.
[3]沈先锋.火炸药生产质量评定指标体系及定量评定方法[J].火炸药学报,2004,27(4):33.
[4]刘萍,许西宁.火炸药撞击感度标准装置及其测量不确定度分析[J].火炸药学报,2003,26(2):16.
[5]徐复铭,王泽山.重视创新,实现火炸药的跨越式发展[J].火炸药学报,2001,24(2):1.
[6]崔磊军,刘有智,焦纬洲,等.超重力法回收火炸药厂的混合溶剂[J].火炸药学报,2007,30(6):51.
[7]段 云,张 奇.瞬态点火装置及其测试系统的设计[J].火炸药学报,2008,31(5):43.
[8]焦纬洲,刘有智,祁贵生.超重力技术在火炸药生产中的应用[J].火炸药学报,2009,32(2):87.
 JIAO Wei zhou,LIU You zhi,QI Gui sheng.Application of High Gravity Technology in Propellants and Explosives Production[J].,2009,32(预出版):87.
[9]吕春绪.绿色硝化研究进展[J].火炸药学报,2011,34(1):1.
 LüChun-xu.Study Progress on Green Nitration[J].,2011,34(预出版):1.
[10]顾赛克,邓琼,苗应刚,等.JHB-1C传爆药高应变率力学行为的实验方法[J].火炸药学报,2011,34(5):33.
 GU Sai-ke,DENG Qiong,MIAO Ying-gang,et al.Experimental Method of Mechanical Behavior of the JHB-1C Explosive at High Strain Rate[J].,2011,34(预出版):33.

备注/Memo

收稿日期:2018-00-00;修回日期:2018-00-00; {此行保留,由编辑部给出}
作者简介:杨伟涛(1987 -),男,副研究员,主要从事含能材料在发射药中的应用研究。e-mail:njyangewitao@163.com
通信联系人:王琼林(1966 -),男,研究员,主要从事发射药及装药技术研究。

更新日期/Last Update: 2020-01-17


@Copyright 西安近代化学研究所(中国兵器工业第204研究所)  陕ICP备14002633号-2
地址:西安市18号信箱《火炸药学报》编辑部   联系电话:029-88291297   邮箱:hzyxb@204s.com