[1]夏敏,张艳杰,李霄羽,等.自修复固体推进剂研究进展[J].火炸药学报,2019,42(6):531-539.[doi:10.14077/j.issn.1007-7812.201907007]
 XIA Min,ZHANG Yan-jie,LI Xiao-yu,et al.Research Progress of Self-repairing Solid Propellants[J].,2019,42(6):531-539.[doi:10.14077/j.issn.1007-7812.201907007]
点击复制

自修复固体推进剂研究进展

参考文献/References:

[1] 陈晓丹,蒋国霞.自修复高分子材料近五年的研究进展[J].高分子通报, 2017(8):39-47. CHEN Xiao-dan, JIANG Guo-xia. Research progress of self-repairing polymer materials in recent five years[J]. Polymer Bulletin, 2017(8):39-47.
[2] WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409:794-797.
[3] LIU F Y, LI F Y, DENG G H, et al. Rheological images of dynamic covalent polymer networks and mechanisms behind mechanical and self-repairing properties[J]. Macromolecules, 2012, 45(3):1636-1645.
[4] LYON G B, BARANEK A, BOWMAN C N. Scaffolded thermally remendable hybrid polymer networks[J]. Advanced Functional Materials, 2016, 26(9):1477-1485.
[5] CASUSO P, ODRIOZOLA I, PEREZ-SAN VICENTE A, et al. Injectable and self-repairing dynamic hydrogels based on metal(I)-thiolate/disulfide exchange as biomaterials with tunable mechanical properties[J]. Biomacromolecules, 2015, 16(11):3552-61.
[6] ZHANG D D, RUAN Y B, ZHANG B Q, et al. A self-repairing PDMS elastomer based on acylhydrazone groups and the role of hydrogen bonds[J]. Polymer, 2017, 120(30):189-196.
[7] GARCIA J M, JONES G O, VIRWANI K, et al. Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines[J]. Science, 2014, 344(6185):732.
[8] DAHLKE J, BOSE R K, ZECHEL S, et al. A new approach toward metal-free self-healing ionomers based on phosphate and methacrylate containing copolymers[J].Macromolecular Chemistry & Physics,2017, 218(23):1700340-1700349.
[9] PESTKA K A, BUCKLEY J D, KALISTA S J, et al. Elastic evolution of a self-repairing ionomers observed via acoustic and ultrasonic resonant spectroscopy[J]. Scientific Reports, 2017, 7(1):14117-14124.
[10] GARCIA-HUETE N, POST W, LAZA J M, et al. Effect of the blend ratio on the shape memory and self-repairing behaviour of ionomer-polycyclooctene closslinked polymer blends[J]. European Polymer Journal, 2017, 98(1):1-27.
[11] ZHANG J Y, LI M, CHENG L, et al. Multifunctional polymers built on copper-thioether coordination[J]. Polymer Chemistry, 2017, 8(42):6527-6533.
[12] 杨哲, 魏宏亮,楚晖娟,等.应用Diels-Alder反应制备聚合物的研究进展[J]. 高分子通报, 2010(1):41. YANG zhe, WEI Hong-liang, CHU Hui-juan,et al. Research progress on preparation of polymers by Diels-Alder reaction[J]. Polymer Bulletin, 2010(1):41.
[13] STEWART S A, BACKHOLM M, BURKE N A. Crosslinked hydrogels formed through diels-alder coupling of Furan-and maleimide-modified poly(methyl vinyl ether-alt-maleic acid)[J]. Langmuir, 2016, 32(7):1863-1870.
[14] 朱彦熹.层层组装自修复膜的制备及应用研究[D].南京:东南大学,2017. ZHU Yan-xi. Preparation and application of self-repairing membranes for layered assembly[D]. Nanjing:Southeast University, 2017.
[15] YANG J H, LIU Z Q, WEI Z, et al. Novel biocompatible polysaccharide-based self-healing hydrogel[J]. Advanced Functional Materials, 2015, 25(9):1352-1359.
[16] KOLOMIIES E, LEHN J M. Double dynamers:molecular and supramolecular double dynamic polymers[J]. Chemical Communication, 2005, (12):1519-1521.
[17] DENG G H,TANG C M, LI F Y, et al.Covalent cross-linked polymer gels with reversible sol-gel transition and Self-healing properties[J]. Macromolecules, 2010, 43(3):1191-1194.
[18] ZHANG H Q, XIA H S, ZHAO Y. Poly(vinyl alcohol) hydrogel can autonomously self-heal[J]. ACS Macro Letters, 2012, 1(11):1233-1236.
[19] YANG J X, LONG Y Y, PAN L,et al. Spontaneously healable thermoplastic elastomers achieved through one-pot living ring-opening metathesis copolymerization of well-designed bulky monomers[J]. ACS Applied Materials and Interfaces, 2016, 8(19):12445-12455.
[20] SORDO F, MOUGNIERS J, LOUREIRO N, et al. Design of self-healing supramolecular rubbers with a tunable number of chemical cross-links[J]. Macromolecules, 2015, 48(13):4394-4402.
[21] EMMANUEL A, RONALD K. Interactions with aromatic rings in chemical and biological recognition[J]. Angewandte Chemie International Edition, 2003, 42(35):4120-4120.
[22] BURATTINI S, COLQUHOUN H M, GREENLAND B W, et al. A novel self-healing supramolecular polymer system[J]. Faraday Discussions, 2009, 143:251.
[23] HART L R, HUNTER J H, NGUYENN A, et al. Multivalency in healable supramolecular polymers:the effect of supramolecular cross-link density on the mechanical properties and healing of non-covalent polymer networks[J]. Polymer Chemistry, 2014, 5(11):3680-3688.
[24] YU L Y, MADSEN F B, HVILSTED S, et al. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks[J]. Rsc Advances, 2015, 5(61):49739-49747.
[25] MADSEN F B, YU L Y, SKOV A L, et al. Self-healing,high-permittivity silicone dielectric elastomer[J]. Acs Macro Letters, 2016, 5(11):1196-1200.
[26] HE X, ZHANG C, WANG M, et al. An electrically and mechanically autonomic self-healing hybrid hydrogel with tough and thermoplastic properties[J]. Acs Applied Materials & Interfaces, 2017, 9(12):11134-11144.
[27] CHU T L,CUONG H M, IMAD A. Analysis of local and global localizations on the failure phenomenon of 3D interlock woven fabrics under ballistic impact[J]. Composite Structures, 2017, 159(1):267-277.
[28] HOGAN J D, FARBANIEC L, MALLICK D, et al. Fragmentation of an advanced ceramic under ballistic impact:Mechanisms and microstructure[J]. International Journal of Impact Engineering, 2017, 102(4):47-54.
[29] KO J,KIM Y J,KIM Y S. Self-healing polymer dielectric for a high capacitance gate insulator[J]. Acs Applied Materials & Interfaces, 2016, 8(36):23854-23861.
[30] 陈胜, 刘云飞, 姚维尚. 组分对高能HTPB推进剂燃烧性能和力学性能的影响[J].火炸药学报, 2007, 30(5):62-65. CHEN Sheng, LIU Yun-fei, YAO Wei-shang. Effects of components on combustion performance and mechanical properties of high-energy HTPB propellant[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2007,30(5):62-65.
[31] LIANG C Y, LI J, XIA M. Performance and kinetics study of self-repairing hydroxyl-terminated polybutadiene binders basedon the diels-alder reaction[J]. Polymers, 2017, 9(6):200.
[32] 梁楚尧,李杰,夏敏. 自修复型端羟基聚丁二烯粘合剂的合成与性能表征[J].高分子材料科学与工程, 2018, 34(3):12-16. LIANG Chu-yao, LI Jie, XIA Min. Synthesis and performance of self-healing hydroxyl-terminated polybutadiene binders[J]. Polymer Materials Science and Engineering, 2018, 34(3):12-16.
[33] 梁楚尧. Diels-Alder反应在自修复端呋喃甲酯基聚丁二烯黏合剂中的应用[D].北京:北京理工大学,2017. LIANG Chu-yao. Application of Diels-Alder reaction in self-repairing furo-methyl polybutadiene adhesive[D]. Beijing:Beijing Institute of Technology,2017.
[34] 高菲,曹建诚,刘仁.聚碳酸酯二元醇基光固化自修复聚氨酯的制备及性能研究[J].涂料工业,2017,47(10):1-6. GAO Fei, CAO Jian-cheng, LIU Ren. Preparation and properties of polycarbonate diol-based photocuring self-repairing polyurethane[J]. Coating Industry, 2017, 47(10):1-6.
[35] 颜瑞. 基于可逆光交联反应的力学可调自修复型聚氨酯的研究[D].北京:北京理工大学,2018. YAN Rui. Study on mechanically adjustable self-repairing polyurethane based on reversible photocrosslinking reaction:[D]. Beijing:Beijing Institute of Technology,2018.
[36] XU Y R,CHEN D J. A novel self-healing polyurethane based on disulfide bonds[J]. Macromolecular Chemistry and Physics, 2016, 217(10):1191-1196.
[37] AN S Y, NOH S M, NAM J H, et al. Dual sulfide-disulfide crosslinked networks with rapid and room temperature self-healability[J]. Macromolecular Rapid Communications, 2015, 36(13):1255-1260.
[38] 菅晓霞,宋育芳,赵盟辉.GAP基自修复黏结剂的制备及性能[J].含能材料,2019,27(2):131-136. JIAN Xiao-xia, SONG Yu-fang, ZHAO Meng-hui. Preparation and properties of GAP-based self-repairing Binder[J]. Energetic Materials, 2019, 27(2):131-136.

相似文献/References:

[1]张晓宏,莫红军.下一代战术导弹固体推进剂研究进展[J].火炸药学报,2007,30(1):24.
[2]王 昕.美国不敏感混合炸药的发展现状[J].火炸药学报,2007,30(2):78.
[3]王晗,赵凤起,李上文,等.碳物质在固体推进剂中的功能及其作用机理[J].火炸药学报,2006,29(4):32.
[4]田广丰,康建成,胥会祥,等.小型推进剂管状装药药形尺寸数字化检测技术[J].火炸药学报,2006,29(4):61.
[5]张劲民,王志强,袁华.超声波燃速测试技术在固体推进剂研制中的应用[J].火炸药学报,2006,29(3):9.
[6]刘建民,唐少春,徐复铭,等.基于ANN的丁羟复合推进剂燃速预测[J].火炸药学报,2006,29(3):13.
[7]王海鹰,李斌栋,吕春绪,等.硼酸酯表面活性剂的研究及应用[J].火炸药学报,2006,29(3):36.
[8]赵省向,戴致鑫,张成伟,等.DNTF及其低共熔物对PBX可压性的影响[J].火炸药学报,2006,29(3):39.
[9]冉秀伦,杨荣杰.HTPB/AP/Al复合推进剂燃速降速剂研究[J].火炸药学报,2006,29(2):41.
[10]万代红,府勤,黄洪勇,等.燃速催化剂对ADN的热分解作用[J].火炸药学报,2006,29(2):72.
[11]王保国,张景林,陈亚芳,等.含超细高氯酸铵核-壳型复合材料的制备[J].火炸药学报,2006,29(3):54.
[12]陈 煜,刘云飞,谭惠民.NEPE推进剂的细观力学性能研究[J].火炸药学报,2008,31(1):56.
[13]詹发禄,宋明纲,许艳波,等.国外硝仿肼研究新进展[J].火炸药学报,2008,31(5):70.
[14]曲凯,张旭东,李高春.基于内聚力界面脱黏的复合固体推进剂力学性能研究[J].火炸药学报,2008,31(6):77.
[15]莫文宾,李进贤.基于遗传神经网络的NEPE推进剂寿命预估[J].火炸药学报,2009,32(5):58.
[16]吴彬,柴春鹏,夏敏,等.超支化聚氨酯对以PET为基聚氨酯胶片性能的影响[J].火炸药学报,2009,32(6):11.
[17]李军,赵孝彬,王晨雪,等.固体推进剂整形过程工艺安全性的有限元分析[J].火炸药学报,2009,32(6):87.
[18]李伟,包玺,唐根,等.纳米铝粉在高能固体推进剂中的应用[J].火炸药学报,2011,34(5):67.
 LI Wei,BAO Xi,TANGGen,et al.Application of Nano-aluminum Powder in High Energy Solid Propellant[J].,2011,34(6):67.
[19]赖建伟,常新龙,王朝霞,等.固体推进剂低温力学性能的研究进展[J].火炸药学报,2013,36(2):1.
 LAI Jian-wei,CHANG Xin-long,WANG Chao-xia,et al.Progress of Study on Low Temperature Mechanical Properties of Solid Propellant[J].,2013,36(6):1.
[20]常新龙,龙兵,胡宽,等.固体推进剂断裂性能研究进展[J].火炸药学报,2013,36(3):6.
 CHANG Xin-long,LONG Bing,HU Kuan,et al.Progress of Study on the Fracture Performance of Solid Propellant[J].,2013,36(6):6.

备注/Memo

收稿日期:2019-07-28;改回日期:2019-11-24。
基金项目:中央高校基本科研业务费专项资金(No.3052017010)
作者简介:夏敏(1979-),男,副教授,从事高性能固体推进剂技术研究。E-mail:xminbit@bit.edu.cn
通讯作者:罗运军(1964-),男,教授,从事新型含能材料与固体推进剂研究。E-mail:yjluo@bit.edu.cn

更新日期/Last Update: 1900-01-01


@Copyright 西安近代化学研究所(中国兵器工业第204研究所)  陕ICP备14002633号-2
地址:西安市18号信箱《火炸药学报》编辑部   联系电话:029-88291297   邮箱:hzyxb@204s.com