|本期目录/Table of Contents|

[1]杨秋秋,蔡如琳,徐胜良,等.原位拉伸扫描电镜法研究GAP推进剂的损伤行为[J].火炸药学报,2019,42(5):511-515.[doi:10.14077/j.issn.1007-7812.2019.05.015]
 YANG Qiu-qiu,CAI Ru-lin,XU Sheng-liang,et al.Damage Behavior of GAP Solid Propellant by In-situ Tensile SEM Method[J].,2019,42(5):511-515.[doi:10.14077/j.issn.1007-7812.2019.05.015]
点击复制

原位拉伸扫描电镜法研究GAP推进剂的损伤行为()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第5期
页码:
511-515
栏目:
出版日期:
2019-10-31

文章信息/Info

Title:
Damage Behavior of GAP Solid Propellant by In-situ Tensile SEM Method
作者:
杨秋秋 蔡如琳 徐胜良 张箭 黄志萍 周明川
湖北航天化学技术研究所, 湖北 襄阳 441003
Author(s):
YANG Qiu-qiu CAI Ru-lin XU Sheng-liang ZHANG Jian HUANG Zhi-ping ZHOU Ming-chuan
Hubei Institute of Aerospace Chemotechnology, Xiangyang Hubei 441003, China
关键词:
材料力学GAP推进剂损伤行为原位拉伸扫描电镜分形维数
Keywords:
material mechanicsGAP propellantdamage behaviorin-situ SEMfractal dimension
分类号:
TJ55;V512
DOI:
10.14077/j.issn.1007-7812.2019.05.015
文献标志码:
-
摘要:
采用原位拉伸扫描电镜研究了GAP推进剂的损伤演化过程,并结合数字图像技术和分形维数的方法对裂纹演化进行了定量分析。结果表明,GAP推进剂在拉伸过程中的破坏首先发生在大粒径的AP颗粒集中分布区域,紧邻AP颗粒间少量的黏合剂基体断裂及脱粘;然后再到分散分布区域的AP颗粒及其附近位置处与黏合剂基体的脱粘;拉伸前期裂纹增加较为迅速,其后缓慢增加直到推进剂整体断裂;拉伸速率越慢,拉伸前期裂纹增加越快,且整个拉伸过程损伤程度越大;其中,拉伸速率为0.05 mm/min的拉伸过程损伤程度最为显著。
Abstract:
In-situ tensile scanning electron microscopy (SEM) observations were utilized to investigate the tensile fracture behavior of the GAP solid propellant. Quantitative analysis of fracture evolution is carried out by combining digital image technology and fractal dimension method. The results show that the microstructure damage first occurs in the concentrated distribution area of AP particles with large particle size, the fracture and debonding of small amount of adhesive matrix between adjacent AP particles starts. Then AP particles in the dispersed area and their adjacent positions are debonded to the adhesive matrix. The fracture increases rapidly in the early tension stage, and then the cracks become slowly till the whole propellant broke. The lower the tensile rate is, the faster the cracks grow, and the greater the damage degree in the tension process is. Among all the test tensile rates, the tensile rate of 0.05 mm/min was the most obvious one.

参考文献/References:

[1] RAMSHORST M C J, Di BENEDETTO G L, DUVALOIS W, et al. Investigation of the failure mechanism of HTPB/AP/Al propellant by in-situ uniaxial tensile experimentation in SEM[J]. Propellants, Explosives, Pyrotechnics, 2016,41:700-708.
[2] GIUSEPPE L, MARTHINUS C J, WILLEM D. In-situ tensile testing of propellants in SEM:Influence of temperature[J]. Propellants, Explosives, Pyrotechnics, 2017,42:1396-1400.
[3] ZHANG Jiang-tao, SONG Dan-ping, ZHANG Mei. Microstructure deformation and fracture mechanism of highly polymer composites under large tensile deformation[J].Journal of Physics:Conference Series, 2013(419):1-7.
[4] 蔡如琳,胡伟,陈雯,等. NEPE推进剂拉伸断裂行为研究[J]. 化学推进剂与高分子材料,2013,11(3):44-47. CAI Ru-lin,HU Wei,CHEN Wen,et al. Investigation on tensile fracture behavior of NEPE propellant[J].Chemical Propellants & Polymeric Materials,2013,11(3):44-47.
[5] 陈煜,刘云飞,谭惠民. NEPE推进剂的细观力学性能研究[J]. 火炸药学报,2008,31(1):56-59. CHEN Yu, LIU Yun-fei, TAN Hui-min. Study on the micromechanics of the NEPE solid propellant[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2008,31(1):56-59.
[6] 周水平,唐根,庞爱民,等. GAP复合固体推进剂细观结构演变特性[J]. 固体火箭技术, 2018,41(5):580-592. ZHOU Shui-ping, TANG Gen, PANG Ai-min, et al. Evolution of meso-structure of GAP composite solid propellants[J]. Journal of Solid Rocket Technology, 2018,41(5):580-592.
[7] 周宏玉,张教强,豆荣荣,等. PAN-b-PHEA和PAN-b-P(HEA-g-AEFC)与复合固体推进剂组分的表界面性能[J]. 化学推进剂与高分子材料,2016,14(3):53-56. ZHOU Hong-yu, ZHANG Jiao-qiang, DOU Rong-rong, et al. Surfacial and interfacial performance between PAN-b-PHEA and PAN-b-P(HEA-g-AEFC) with composite solid propellant components[J]. Chemical Propellants & Polymeric Materials, 2016,14(3):53-56.
[8] 周文静,马亚南,王克勇,等. NTO与黏结剂的界面作用[J]. 火炸药学报, 2010,33(4):40-43. ZHOU Wen-jing, MA Ya-nan, WANG Ke-yong, et al. Interfacial interaction between NTO and bindings[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2010,33(4):40-43.
[9] Nirupam S B, CHAUDHURI.B B. An efficient differential Box-counting approach to compute fractal dimension of image[J].IEEE Transactions on Sustems Man and Cybernetics,1994,24(1):115-120.
[10] 彭瑞东,谢和平,鞠和平.二维数字图像分形维数的计算方法[J].中国矿业大学学报,2004,33(1):19-24. PENG Rui-dong, XIE He-ping, JU He-ping. Computation method of fractal dimension for 2-D digital image[J].Journal of China University of Mining & Technology, 2004,33(1):19-24.

相似文献/References:

[1]堵平,王泽山,何卫东.发射药拉伸试验试样制备方法的改进[J].火炸药学报,2008,31(6):54.
[2]颜熹琳,周阳,周筱雨.JOB9003炸药的载荷环境试验[J].火炸药学报,2009,32(1):36.
 YAN Xi lin,ZHOU Yang,ZHOU Xiao yu.Load Environmental Test of Explosive JOB9003[J].,2009,32(5):36.
[3]索 涛,邓 琼,苗应刚,等.基于Hopkinson压杆实验技术的含能材料动态力学性能测试方法研究进展[J].火炸药学报,2010,33(2):5.
 SUO Tao,DENG Qiong,MIAOYing-gang,et al.Progress in Experimental Determination of Dynamic Mechanical Behaviors[J].,2010,33(5):5.
[4]田轩,王晓峰,南海,等.撞击加载下炸药晶体的破碎特征[J].火炸药学报,2012,35(1):27.
 TIAN Xuan,WANG Xiao-feng,NAN Hai,et al.Fracture Feature of Explosive Crystal under Impact Loading[J].,2012,35(5):27.
[5]蔚红建,李丁,朱欣华,等.双金属有机化合物对星型聚叠氮缩水甘油醚推进剂燃烧性能的影响[J].火炸药学报,2013,36(1):64.
 YU Hong-jian,LI Ding,ZHU Xin-hua,et al.Influence of Double-metal Organic Salts on Combustion Characteristics of Satellite GAP Based Propellant[J].,2013,36(5):64.
[6]蔚红建,李吉祯,舒安民,等.高能填料对星型GAP推进剂燃烧性能的影响[J].火炸药学报,2013,36(2):52.
 YU Hong-jian,LI Ji-zhen,SHU An-min,et al.Influence of High Energy Fillers on Combustion Characteristics of Stellate GAP Based Propellant[J].,2013,36(5):52.
[7]施明达.GAP与GAP推进剂的研究进展[J].火炸药学报,1994,17(1):9.

备注/Memo

备注/Memo:
收稿日期:2019-03-25;改回日期:2019-07-08。
作者简介:杨秋秋(1991-),女,硕士,助理工程师,从事含能材料研究工作。E-mail:wendyyoung@163.com
更新日期/Last Update: 1900-01-01