|本期目录/Table of Contents|

[1]任杰,张天河,李志敏,等.3-甲氧基-6-硝胺基-1,2,4,5-四嗪化脲的制备、结构与性能研究[J].火炸药学报,2019,42(5):438-444.[doi:10.14077/j.issn.1007-7812.2019.05.003]
 REN Jie,ZHANG Tian-he,LI Zhi-min,et al.Synthesis, Structure and Properties of 3-Methoxyl-6-nitramine -1, 2, 4, 5-tetrazylated Urea[J].,2019,42(5):438-444.[doi:10.14077/j.issn.1007-7812.2019.05.003]
点击复制

3-甲氧基-6-硝胺基-1,2,4,5-四嗪化脲的制备、结构与性能研究()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第5期
页码:
438-444
栏目:
出版日期:
2019-10-31

文章信息/Info

Title:
Synthesis, Structure and Properties of 3-Methoxyl-6-nitramine -1, 2, 4, 5-tetrazylated Urea
作者:
任杰 张天河 李志敏 王林 张同来
北京理工大学爆炸科学与技术国家重点实验室, 北京 100081
Author(s):
REN Jie ZHANG Tian-he LI Zhi-min WANG Lin ZHANG Tong-lai
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
关键词:
有机化学高氮杂环化合物四嗪类化合物晶体结构
Keywords:
organic chemistryhigh nitrogen heterocyclic compoundtetrazine compoundcrystal structure
分类号:
TJ55;O62
DOI:
10.14077/j.issn.1007-7812.2019.05.003
文献标志码:
-
摘要:
通过3,6-二硝胺基-1,2,4,5-四嗪(DNAT)和脲反应制得3-甲氧基-6-硝胺基-1,2,4,5-四嗪化脲;采用红外光谱、元素分析和核磁共振对其结构进行了表征;采用X射线单晶衍射测定了其晶体结构;采用差示扫描量热法(DSC)、热重-微分热重法(TG-DTG)、氧弹量热法对其热性能进行了测试,并测试了其撞击感度和摩擦感度;用Ozawa法和Kissinger法计算了其热分解动力学参数,进而采用非等温动力学法计算了热爆炸临界温度。结果表明,该化合物晶体属于单斜晶系,P21/n空间群,晶体密度为1.640 g/cm3,每个晶胞中包含4个3-甲氧基-6-硝胺基-1,2,4,5-四嗪化脲分子,晶胞参数:a=0.717 99(14)nm,b=1.810 9(4)nm,c=0.957 61(19)nm,β=108.02°(3),V=1.184 0(4)nm3。其放热峰温为147.7℃,生成焓为-1142.63 kJ/mol,撞击感度(H50)为13 cm,对摩擦刺激钝感,是一种具有潜在应用价值的含能化合物。
Abstract:
3-Methoxy-6-nitroamino-1,2,4,5-tetrazylated urea was prepared by the reaction of 3,6-dinitroamino-1,2,4,5-tetrazine (DNAT) and urea. Its structure was characterized by infrared spectroscopy, elemental analysis and nuclear magnetic resonance. The crystal structure was determined by X-ray single crystal diffraction, and the thermal properties were tested by differential scanning calorimetry (DSC), thermogravimetry-differential thermogravimetry (TG-DTG) and oxygen bombs. The impact and friction sensitivities were tested. The thermal decomposition kinetic parameters were calculated by Ozawa method and Kissinger method. Meanwhile, the critical temperature of thermal explosion was calculated by non-isothermal kinetic method. The results show that the crystal of the compound belongs to the monoclinic system, the P21/n space group, the crystal density is 1.640 g/cm3, and each unit cell contains four 3-methoxy-6-nitroamino-1, 2,4,5-tetrazylated urea molecules. The unit cell parameters are:a=0.717 99(14) nm,b=1.810 9(4) nm,c=0.957 61(19) nm,β=108.02(3)°,V=1.184 0(4) nm3. The exothermic peak temperature of the compound is 147.7℃, and the formation enthalpy is -1142.63 kJ/mol. The compound has an impact sensitivity (H50) of 13 cm and is insensitive to frictional stimuli, which can be considered as a potential energetic compound.

参考文献/References:

[1] CHAVEZ D E, PARRISH D A, MITCHELL L. Energetic trinitro- and fluorodinitroethyl ethers of 1,2,4,5-tetrazines[J]. Angew Chem Int Ed Engl, 2016, 55(30):8666-8669.
[2] CHEN X, ZHANG C, BAI Y, et al. Synthesis, crystal structure and thermal properties of an unsymmetrical 1,2,4,5-tetrazine energetic derivative[J]. Acta Crystallogr C Struct Chem, 2018, 74(6):666-672.
[3] HE C, GAO H, IMLER G H, et al. Boosting energetic performance by trimerizing furoxan[J]. Journal of Materials Chemistry A, 2018, 6(20):9391-9396.
[4] HE C, IMLER G H, PARRISH D A, et al. Energetic salts of 4-nitramino-3-(5-dinitromethyl-1,2,4-oxadiazolyl)-furazan:powerful alliance towards good thermal stability and high performance[J]. Journal of Materials Chemistry A, 2018, 6(35):16833-16837.
[5] LIU Y, HE C, TANG Y, et al. Tetrazolyl and dinitromethyl groups with 1,2,3-triazole lead to polyazole energetic materials[J]. Dalton Trans, 2019, 48(10):3237-3242.
[6] KUMAR D, HE C, MITCHELL L A, et al. Connecting energetic nitropyrazole and aminotetrazole moieties with N,N’-ethylene bridges:a promising approach for fine tuning energetic properties[J]. Journal of Materials Chemistry A, 2016, 4(23):9220-9228.
[7] TANG Y, HE C, MITCHELL L A, et al. C-N bonded energetic biheterocyclic compounds with good detonation performance and high thermal stability[J]. Journal of Materials Chemistry A, 2016, 4(10):3879-3885.
[8] YIN P, HE C, SHREEVE J N M. Fused heterocycle-based energetic salts:alliance of pyrazole and 1,2,3-triazole[J]. Journal of Materials Chemistry A, 2016, 4(4):1514-1519.
[9] YIN P, PARRISH D A, SHREEVE J M. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives:ternary hydrogen-bond induced high energy density materials[J]. J Am Chem Soc, 2015, 137(14):4778-4786.
[10] TANG Y, IMLER G H, PARRISH D A, et al. Oxidative cyclization protocol for the preparation of energetic 3-amino-5-R-1,2,4-oxadiazoles[J]. Org Lett, 2018,20(24):8039-8042.
[11] YIN P, HE C, SHREEVE J M. Fully C/N-polynitro-functionalized 2,2’-biimidazole derivatives as nitrogen- and oxygen-rich energetic salts[J]. Chemistry, 2016, 22(6):2108-2113.
[12] CHAVEZ D E, TAPPAN B C, MASON B A, et al. Synthesis and energetic properties of bis-(triaminoguanidinium) 3,3’-dinitro-5,5’-azo-1,2,4-triazolate (TAGDNAT):A new high-nitrogen material[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(6):475-479.
[13] KLAPOETKE T M, SABATE C M, RASP M. Synthesis and properties of 5-nitrotetrazole derivatives as new energetic materials[J]. Journal of Materials Chemistry, 2009, 19(15):2240-2252.
[14] CIEZAK J A. The high-pressure characterization of energetic materials 2-methyl-5-nitramino-2H-tetrazole[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(6):550-554.
[15] WU B-D, ZHANG T-L, LI Y-L, et al. Preparation, crystal structure, thermal decomposition and explosive properties of the novel compound Mg(H2O)(6) (ATZ)(2)(PA)(2) (ATZ=4-Amino-1,2,4-triazole and PA=Picrate)[J]. Main Group Chemistry, 2013, 12(3):185-195.
[16] ABOUDI J, BAYAT Y, ABEDI Y, et al. 3-Nitro, 1-amino guanidine and 5-hydrazino-1H-tetrazole derivatives as new energetic materials[J]. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 2015, 34(2):1-16.
[17] KESHAVARZ M H, ABADI Y H, ESMAEILPOUR K, et al. Assessment of the effect of N-oxide group in a new high-performance energetic tetrazine derivative on its physicochemical and thermodynamic properties, sensitivity, and combustion and detonation performance[J]. Chemistry of Heterocyclic Compounds, 2017, 53(6-7):797-801.
[18] RUDAKOV G F, MOISEENKO Y A, SPESIVTSEVA N Y А. Synthesis of monosubstituted 1,2,4,5-tetrazines-3-amino-1,2,4,5-tetrazines[J]. Chemistry of Heterocyclic Compounds, 2017, 53(6-7):802-810.
[19] RUDAKOV G F, USTINOVA T V, KOZLOV I B, et al. Synthesis and properties of alkylnitramino-1,2,4,5-tetrazines[J]. Chemistry of Heterocyclic Compounds, 2014, 50(1):53-64.
[20] DELBENE J E, PERSON W B, SZCZEPANIAK K. Properties of hydrogen-bonded complexes obtained from the B3LYP functional with 6-31G(D,P) and 6-31+G(D,P) basis-sets-comparison with MP2/6-31+G(D,P) results and expermental-data[J]. Journal of Physical Chemistry, 1995, 99(27):10705-10707.
[21] HARVEY J N. On the accuracy of density functional theory in transition metal chemistry[J]. Physical Chemistry C, 2006, 102(102):203-226.
[22] GUERRA C F, SNIJDERS J G, TE VELDE G, et al. Towards an order-N DFT method[J]. Theoretical Chemistry Accounts, 1998, 99(6):391-403.
[23] STRATI G L, WILLETT J L, MOMANY F A. Ab initio computational study of β-cellobiose conformers using B3LYP/6-311++G**[J]. Carbohydrate Research, 2002,337(20):1833-1849.
[24] KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706.
[25] OZAWA T. A New method of analyzing thermogravimetric data[J]. Bullchemsocjpn, 1965, 38(11):1881-1886.
[26] ZHANG T.L, HU R.Z, XIE Y, et al, The estimation of critical-temperatures of thermal-explosion for energetic materials using nonisothermal DSC[J]. Thermochimica Acta, 1994,244:171-176.

相似文献/References:

[1]周彦水,李建康,黄新萍,等.3,4-双(4′-氨基呋咱基-3′)氧化呋咱的合成及性能[J].火炸药学报,2007,30(1):54.
[2]彭汝芳,金 波,马冬梅,等.2-(2-硝基苯基)吡咯烷[3′,4′∶1,2][60]富勒烯的合成[J].火炸药学报,2007,30(2):29.
[3]陈 斌,张志忠,姬月萍.偕二硝基类含能增塑剂的合成及应用[J].火炸药学报,2007,30(2):67.
[4]莫洪昌,甘孝贤.3-硝酸酯甲基-3-甲基氧杂环丁烷的合成及表征[J].火炸药学报,2006,29(6):58.
[5]郑晓东,马晓东,邱少君,等.一种新型叠氮含能固化剂的合成及性能[J].火炸药学报,2006,29(5):63.
[6]韩涛,甘孝贤,邢颖,等.3-叠氮甲基-3-乙基氧杂环丁烷及其均聚物的合成与性能[J].火炸药学报,2006,29(5):72.
[7]曹继平,李东林,王吉贵.不饱和聚酯包覆含DNT双基推进剂的研究[J].火炸药学报,2006,29(4):41.
[8]李东林,曹继平,王吉贵.不饱和聚酯包覆层的耐烧蚀性能[J].火炸药学报,2006,29(3):17.
[9]钱华,吕春绪,叶志文.绿色硝解合成六硝基六氮杂异伍兹烷[J].火炸药学报,2006,29(3):52.
[10]赵建民,李加荣,魏筱洁,等.三硝基吡啶及其N-氧化物的合成[J].火炸药学报,2006,29(3):73.

备注/Memo

备注/Memo:
收稿日期:2019-03-21;改回日期:2019-04-16。
基金项目:爆炸科学与技术国家重点实验室重点基金(No.ZDKT17-01)
作者简介:任杰(1996-),男,博士研究生,从事含能材料制备和应用研究。E-mail:renjiebit@163.com
通讯作者:张同来(1960-),男,教授,博导,从事含能配合物的结构、性能和应用研究。E-mail:ztlbit@bit.edu.cn
更新日期/Last Update: 1900-01-01