|本期目录/Table of Contents|

[1]张幺玄,陈松,廉鹏,等.空化水射流倒空弹药装药的试验研究及数值模拟[J].火炸药学报,2019,42(4):415-420.[doi:10.14077/j.issn.1007-7812.2019.04.017]
 ZHANG Yao-xuan,CHEN Song,LIAN Peng,et al.Experimental Study and Numerical Simulation on Emptying Explosive of Ammunition with Cavitation Water Jet[J].,2019,42(4):415-420.[doi:10.14077/j.issn.1007-7812.2019.04.017]
点击复制

空化水射流倒空弹药装药的试验研究及数值模拟()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第4期
页码:
415-420
栏目:
出版日期:
2019-08-31

文章信息/Info

Title:
Experimental Study and Numerical Simulation on Emptying Explosive of Ammunition with Cavitation Water Jet
作者:
张幺玄 陈松 廉鹏 康超 雷靖华 范鑫辰 罗志龙
1. 西安近代化学研究所, 陕西 西安 710065;
2. 中国兵器工业试验测试研究院, 陕西 华阴 714200
Author(s):
ZHANG Yao-xuan CHEN Song LIAN Peng KANG Chao LEI Jing-hua FAN Xin-chen LUO Zhi-long
1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
2. China Ordnance Industry Institute of Experiment and Test, Huayin Shaanxi 714200, China
关键词:
应用化学空化水射流报废弹药倒空装药数值模拟钝黑铝炸药
Keywords:
applied chemistrycavitation water jetcondemned ammunitionemptying explosivenumerical simulationA-IX-Ⅱ explosive
分类号:
TJ55;O69
DOI:
10.14077/j.issn.1007-7812.2019.04.017
文献标志码:
-
摘要:
为解决报废弹药倒空问题,开展了空化水射流倒空弹药装药的试验和数值模拟研究;探讨了空化水射流对装药的作用机理和倒药主装置关键技术,在空化水射流倒药装置上对钝黑铝装药(A-IX-Ⅱ)进行倒空试验,建立了单喷嘴空化水射流倒药简化物理模型,模拟得到空化水射流流场分布和装药力学响应情况。结果表明,宏观水射流和空化泡微观水射流共同促进弹药倒空过程;空化水射流技术能够在15~30 min内干净倒空76~155 mm口径的钝黑铝装药,倒出装药粒径平均大小为1~2 cm,最大粒径不超过4 cm,试验稳定性好;空化水射流速度和压力分布遵循伯努利定律,最大速度可达数百米每秒,发生在空化喷嘴收缩段;空化泡在装药表面受力失衡发生空化作用可有效侵蚀破碎装药;装药侵蚀破碎主要发生在射流与装药接触区域,多喷嘴喷头倒药会在装药表面形成多个同心环形蚀坑带。
Abstract:
In order to solve the problem of emptying explosive, the experimental study and simulation analysis on emptying explosive of condemned ammunition with cavitation water jet are investigated. The mechanism and key technology of cavitation water jet emptying explosive are explained and discussed. The experiments for emptying A-IX-Ⅱ explosive are carried out on a cavitation water jet device, and the simplified physical model of single-nozzel cavitation water jet emptying explosive is established to numerically simulate the flow distribution of cavitation water jet and the mechanical response of simulation explosive. The results show that both macroscopic high speed water jet and microscopic water jet caused by cavitation contribute to the emptying process of explosive ammunition. Cavitation water jet can empty the A-IX-Ⅱ explosive of 76-155 caliber cleanly in 15-30 minutes with a preferable test stability, and the average diameter of A-IX-Ⅱ explosive debris is 1-2 cm with the maximum size no more than 4 cm. The distributions of velocity and pressure of cavitation water jet follow Bernoulli’s law, and the maximum velocity can reach to hundreds of meters per second at the contraction section of cavitation nozzle. The cavitation casused by the force unbalance of cavitation bubbles on the surface of explosive ammunition can erode and break explosive effectively. The explosive broken occurs mainly on the contact surfaces of cavitation water jet and explosive. Multi-nozzle will form multiple concentrically annular etch pit zones on the surface of explosive of ammunition.

参考文献/References:

[1] 罗同杰, 张保良, 宁灵生. 高压水射流技术倒出弹体装药的试验研究[J]. 中北大学学报(自然科学版), 2014, 35(2):122-126. LUO Tong-jie, ZHANG Bao-liang, NING Ling-sheng. Experimental study on emptying explosive of projectile with technology of high pressure water jet[J]. Journal of North University of China(Natural Science Edition), 2014, 35(2):122-126.
[2] 徐其鹏, 陈松, 罗志龙, 等. 国外废旧弹药回收全流程技术进展[J]. 飞航导弹, 2016(1):67-73. XU Qi-peng, CHEN Song, LUO Zhi-long, et al. Recovery technological progress of waste ammunitions for the whole process in foreign countries[J]. Aerodynamic Missile Journal, 2016(1):67-73.
[3] 郁红陶, 张庆明, 何远航. 水射流清理固体推进剂的安全性[J]. 弹箭与制导学报, 2012, 32(4):139-142. YU Hong-tao, ZHANG Qing-ming, HE Yuan-hang. Safety during waterjet removing solid propellant[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(4):139-142.
[4] 何远航, 李海军, 张庆明. 高速水射流与凝聚炸药相互作用的数值模拟[J]. 高压物理学报, 2005, 19(2):169-173. HE Yuan-hang, LI Hai-jun, ZHANG Qing-ming. Numerical simulation of the interactions between hyperpressure waterjet and explosive[J]. Chinese Journal of High Pressure Physics, 2005, 19(2):169-173.
[5] 张保良. 关于制定《高压水射流倒空装药弹体规范》的需求分析[J]. 国防技术基础, 2010(3):17-19. ZHANG Bao-liang. Reauriment analysis for specification on emptying explosive of ammunition with high pressure water jet[J]. Technology Foundation of National Defense, 2010(3):17-19.
[6] Lauterborn W, Lindau O. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall[J]. Journal of Fluid Mechanics, 2003, 479(1):327-348.
[7] Pishchalnikov Y A, Sapozhnikov O A, Bailey M R, et al. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shock waves[J]. Journal of Endourol, 2003, 17:435-446.
[8] Guha A, Barron R M, Balachandar R. An experimental and numerical study of water jet cleaning process[J]. Journal of Materials Processing Technology, 2011, 211(4):610-618.
[9] 李金明, 雷彬, 丁玉奎. 通用弹药销毁处理技术[M]. 北京:国防工业出版社, 2012.
[10] 曹宏安, 张怀智, 郭胜强, 等. 报废弹药处理本质安全化研究[J]. 四川兵工学报, 2011, 32(4):44-46. CAO Hong-an, ZHANG Huai-zhi, GUO Sheng-qiang, et al. Study on essential safety in disposal of abandoned ammunition[J]. Journal of Sichuan Ordnance, 2011, 32(4):44-46.
[11] 李翀, 李文倩. 炮弹倒药生产线中水循环系统问题探讨[J]. 采矿技术, 2008, 8(4):103-104. LI Chong, LI Wen-qian. Discussion on shell powder production line for water circulation system[J]. Mining Technology, 2008, 8(4):103-104.
[12] 王伟. 高压旋转水射流破煤及其冲孔造穴卸压增透机制与应用[D]. 徐州:中国矿业大学, 2016. WANG Wei. Coal breakage impact by high pressure rotary water jet and induced pressure relief and permeability enhancement by hydraulic hlushing cavity:mechanism and application[D]. Xuzhou:China University of Mining and Technology, 2016.
[13] 万继伟, 牛争鸣, 牛助农. 高速水射流粉碎中射流冲击区水垫的增阻效应[J]. 化工进展, 2012, 31(1):30-34. WAN Ji-wei, NIU Zheng-ming, NIU Zhu-nong. Research of water cushion increased resistance effect of jet impact area during the process of high-speed water jet crushing[J]. Chemical Industry and Engineering Progress, 2012, 31(1):30-34.

相似文献/References:

[1]赵孝彬,蒲远远,陈教国,等.武器信息化条件下火炸药发展策略分析[J].火炸药学报,,():7.
 ZHAO Xiao-bin,PU Yuan-yuan,CHEN Jiao-guo,et al.The Analysis about Developed Strategy of Propellant and Explosive in the Circumstances of Weapon Informationization[J].,,(4):7.
[2]赵孝彬,蒲远远,陈教国,等.NEPE推进剂的燃烧转爆轰特性[J].火炸药学报,2007,30(1):4.
[3]肖正刚,应三九,徐复铭,等.发射药的等离子体点火燃烧中止试验研究[J].火炸药学报,2007,30(1):17.
[4]张晓宏,莫红军.下一代战术导弹固体推进剂研究进展[J].火炸药学报,2007,30(1):24.
[5]李 鹏,刘有智,李裕,等.用旋转填料床治理火炸药厂的氮氧化物尾气[J].火炸药学报,2007,30(1):67.
[6]周润强,刘德新,曹端林,等.硝酸脲与RDX共晶炸药研究[J].火炸药学报,2007,30(2):49.
[7]石 飞,王庆法,张香文,等.1,2-丙二醇二硝酸酯的绿色合成[J].火炸药学报,2007,30(2):75.
[8]马海霞,宋纪蓉,胡荣祖.3-硝基-1,2,4-三唑-5-酮及其盐的研究概述[J].火炸药学报,2006,29(6):9.
[9]陆明,周新利.RDX的TNT包覆钝感研究[J].火炸药学报,2006,29(6):16.
[10]刘有智,刁金祥,王贺,等.超重力-臭氧法处理TNT红水的试验研究[J].火炸药学报,2006,29(6):41.

备注/Memo

备注/Memo:
收稿日期:2018-08-14;改回日期:2019-11-28。
基金项目:总装预研共用技术项目(No.4140404XXX)
作者简介:张幺玄(1985-),女,博士,从事报废弹药回收再利用研究。E-mail:yao85225zhang@126.com
更新日期/Last Update: 1900-01-01