|本期目录/Table of Contents|

[1]裴红波,钟斌,李星瀚,等.RDX基含铝炸药圆筒试验及状态方程研究[J].火炸药学报,2019,42(4):403-409.[doi:10.14077/j.issn.1007-7812.2019.04.015]
 PEI Hong-bo,ZHONG Bin,LI Xing-han,et al.Study on the Cylinder Tests and Equation of State in RDX Based Aluminized Explosives[J].,2019,42(4):403-409.[doi:10.14077/j.issn.1007-7812.2019.04.015]
点击复制

RDX基含铝炸药圆筒试验及状态方程研究()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第4期
页码:
403-409
栏目:
出版日期:
2019-08-31

文章信息/Info

Title:
Study on the Cylinder Tests and Equation of State in RDX Based Aluminized Explosives
作者:
裴红波 钟斌 李星瀚 张旭 郑贤旭
中国工程物理研究院流体物理研究所, 四川 绵阳 621999
Author(s):
PEI Hong-bo ZHONG Bin LI Xing-han ZHANG Xu ZHENG Xian-xu
Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang Sichuan 621999, China
关键词:
爆炸力学含铝炸药圆筒试验作功能力状态方程光子多普勒速度计
Keywords:
explosion mechanicsaluminized explosivecylinder testpower capabilityequation of statePDV
分类号:
TJ55;O38
DOI:
10.14077/j.issn.1007-7812.2019.04.015
文献标志码:
-
摘要:
为了研究铝粉含量对含铝炸药作功能力的影响,同时获得含铝炸药中铝粉的反应规律,对5种不同配方的炸药(RDX、RDX/Al、RDX/LiF)开展了Φ25 mm圆筒试验,利用光子多普勒测速技术(PDV)获得了圆筒的速度历程,在JWL状态方程的基础上提出了一种考虑铝粉二次反应速率的含铝炸药状态方程拟合方法。结果表明,对于粒径2 μm的铝粉,结合光子多普勒测速技术,Φ25 mm圆筒试验能够较好地表征铝粉的二次反应过程,铝粉反应的起始时间小于3 μs,铝粉在10~15 μs时间内已经反应完毕;新方法拟合得到的炸药状态方程较好地再现了圆筒膨胀过程,并能够对炸药中铝粉的反应情况进行半定量计算;3种铝粉含量的RDX/Al炸药中,质量分数15%的铝粉炸药作功能力最强;得出在炸药配方设计时,应综合考虑爆热和产物比容,单纯追求高爆热,不能获得最佳的毁伤效果。
Abstract:
To study the effect of aluminum powder content on the metal acceleration ability of alumized explosives and obtain the reaction law of aluminum, a series of 25 mm cylinder tests contained 5 different explosives (RDX, RDX/Al, RDX/LiF)were performed. The expanding velocities of cylinders were measured using Photonic Doppler Velocimetry(PDV). Based on JWL equation of state, a new fitting method was proposed to obtain the state equation containing the secondary reaction of aluminum in detonation products. The results show that for 2 μm aluminum particles, 25 mm cylinder tests combining PDV could characterize the secondary reaction of aluminum.The reaction delay time of aluminum in detonation products was less than 3 μs, and the reaction lasting time was between 10 to 15 μs. The numerical simulation results of cylinder expanding using state equation in aluminized explosives by new method were in good agreement with the experimental results, and the state equation could be used to calculate the reaction progress of aluminium semi-quanlitatively. Among 3 kinds of RDX/Al formulations, the formulation containing 15% aluminum presented the best metal acceleration ability. Thus, both detonation heat and volume of gas products should be synthetically considered to obtain the best performance when a new explosive formulation was designed.

参考文献/References:

[1] Trzcinki W A. Studies of detonationc characteristics of aluminum enriched RDX compositions[J]. Propellants, Explosive, Pyrotechnics, 2007, 32(5):392-400.
[2] Gogulya M F. Detonation waves in HMX/Al mixtures[C]//Proceeding of the 11th International Detonation Symposium. Arlington:Office of Naval Research, 1998:979-988.
[3] 裴红波, 聂建新, 覃剑峰. 基于非平衡多相模型的含铝炸药爆速研究[J]. 爆炸与冲击, 2013, 33(3):311-314. PEI Hong-bo, NIE Jian-xin, QIN Jian-feng. Investigation on detonation velocity of aluminized explosives based on disequilibrium multiphase model[J]. Explosion and Shock Waves, 2013, 33(3):311-314.
[4] YE Song, WU Jing-he, XUE Mian, et al. Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave[J]. Journal of Physics D:Applied Physics, 2008, 41:1-7.
[5] Carney J R, Miller J S, Gump J C. Time-resolved optical measurements of the post-detonation combustion of aluminized explosives[J]. Review of Scientific Instrument, 2006, 77:063103.
[6] Lewis W K, Rumchik C G, Broughton P B. Time-resolved spectroscopic studies of aluminized explosives:chemical dynamics and apparent temperatures[J]. Journal of Applied Physics, 2012, 111:014903.
[7] 裴红波, 焦清介, 覃剑峰. 基于圆筒实验的RDX/Al炸药反应进程研究[J]. 爆炸与冲击,2014, 34(5):636-640. PEI Hong-bo, JIAO Qing-jie, QIN Jian-feng. Reaction process of aluminized RDX-based explosives based on cylinder test[J]. Explosion and Shock Waves, 2014, 34(5):636-640.
[8] 沈飞, 王辉, 袁建飞, 等. 铝含量对RDX基含铝炸药驱动能力的影响[J]. 火炸药学报, 2013, 36(3):51-53. SHEN Fei, WANG Hui, YUAN Jian-fei. Influence of Al content on the driving ability of RDX-based aluminized explosives[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2013, 36(3):51-53.
[9] Tappan B C, Hill L G, Preston D N. Evaluation of the reaction of magnesium-boron and aluminum in PBX 9501-based explosives in the cylinder test[C]//Proceeding of the 15th International Detonation Symposium. Arlington:Office of Naval Research, 2014:202-208.
[10] 陈朗, 张寿齐, 赵玉华. 不同铝粉尺寸含铝炸药加速金属能力的研究[J]. 爆炸与冲击, 1999, 19(3):250-255. CHEN Lang, ZHANG Shou-qi, ZHAO Yu-hua. Study of the metal accelerating capacities of aluminized explosives with spherical aluminum particles of different diameter[J]. Explosion and Shock Waves, 1999, 19(3):250-255.
[11] 胡宏伟, 严家佳, 陈朗, 等. 铝粉含量和粒度对CL-20含铝炸药水中爆炸反应特性的影响[J]. 爆炸与冲击,2017, 37(1):157-161. HU Hong-wei, YAN Jia-jia, CHEN Lang, et al. Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20 based explosives containing aluminum[J]. Explosion and Shock Waves, 2017, 37(1):157-161.
[12] GJB 8381-2015, 炸药圆筒试验光学扫描和激光干涉联合测试方法[S].2015. GJB 8381-2015, Combined method of streak photography and laser interferometry for cylinder test of explosives[S].2015.
[13] Strand O T, Goosman D R, Martinez C, et al. Compact system for high-speed velocimetry using heterodyne techniques[J]. Review of Scientific Instruments, 2006, 77(8):083108.
[14] Ferguson J W and Taylor P. Application of heterodyne velocimetry and pyrometry as diagnostics for explosive characterization[J]. Journal of Physics:Conference Series, 2014, 500(14):102-107.
[15] 孙业斌, 惠君明. 军用混合炸药[M]. 北京:兵器工业出版社, 1995:666-670.
[16] 杨志剑, 刘晓波, 何冠松, 等.混合炸药设计研究进展[J].含能材料,2017, 25(1):2-11. YANG Zhi-jian, LIU Xiao-bo, HE Guan-song, et al. Advances in design research of composite explosives[J]. Chinese Journal of Energetc Materials, 2017, 25(1):2-11.
[17] Miller P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives[C]//Material Research Society Symposium Proceeding. NY:Materials Research Society, 1996:418-424.
[18] 南宇翔, 蒋建伟, 王树有, 等. 一种CL-20基压装混合炸药JWL状态方程参数研究[J].含能材料, 2015, 23(6):516-521. NAN Yu-xiang, JIANG Jian-wei,WANG Shu-you, et al. JWL equation of state of detonation product for CL-20 based pressed composite explosive[J]. Chinese Journal of Energetic Matorials, 2015,23(6):516-521.

相似文献/References:

[1]李翔宇,卢芳云.三种类型战斗部破片飞散的数值模拟[J].火炸药学报,2007,30(1):44.
[2]邢恩峰,钱建平,赵国志.装药结构参数对轴向预制破片抛掷速度的影响[J].火炸药学报,2007,30(1):49.
[3]朱继红.隧道开挖爆破振动对临近建筑物影响的安全评价[J].火炸药学报,2007,30(1):78.
[4]董树南,王世英,朱晋生,等.含ACP改性双基推进剂的燃烧转爆轰实验研究[J].火炸药学报,2007,30(2):17.
[5]李志鹏,黄毅民,龙新平,等.大板实验中TATB基炸药爆轰波的传播特征[J].火炸药学报,2007,30(2):26.
[6]邓向阳,彭其先,赵剑衡,等.测量电爆炸箔驱动飞片速度的实验研究[J].火炸药学报,2007,30(2):45.
[7]梁琴琴,王 军,黄奕刚.新型呋咱(氧化呋咱)类炸药爆轰参数的理论计算[J].火炸药学报,2007,30(2):59.
[8]何洋扬,龙 源.B炸药爆轰波拐角传播的三维数值模拟[J].火炸药学报,2007,30(2):63.
[9]李成兵,裴明敬,沈兆武.聚能杆式弹丸侵彻水夹层复合靶相似律分析[J].火炸药学报,2006,29(6):1.
[10]肖川 宋浦 梁安定.炸药水中爆炸规律的研究进展[J].火炸药学报,2006,29(6):19.
[11]辛春亮,徐更光,刘科种,等.含铝炸药与理想炸药能量输出结构的数值模拟[J].火炸药学报,2007,30(4):6.
[12]饶国宁,陈网桦,胡毅亭,等.不同炸药的爆炸载荷对目标靶板作用的数值模拟[J].火炸药学报,2007,30(4):9.
[13]史锐,徐更光,刘德润,等.炸药爆炸能量的水中测试与分析[J].火炸药学报,2008,31(4):1.
[14]冯晓军,王晓峰,黄亚峰,等.铝粉含量对梯铝炸药爆压和冲击波参数的影响[J].火炸药学报,2009,32(5):1.
[15]胡宏伟,王建灵,徐洪涛,等.RDX基含铝炸药水中爆炸近场冲击波特性[J].火炸药学报,2009,32(2):1.
 HU Hong wei,WANG Jian ling,XU Hong tao,et al.Underwater Shock Wave Characteristics of RDXbased Aluminized Explosives in Nearfield Range[J].,2009,32(4):1.
[16]熊贤锋,王浩,高杰,等.DNTF基熔铸炸药的金属加速作功能力[J].火炸药学报,2011,34(3):32.
 XIONG Xian-feng,WANGHao,GAO Jie,et al.Metal Accelerating Ability of DNTF-based Melt-cast Explosive[J].,2011,34(4):32.
[17]计冬奎,肖川,杨凯,等.含铝炸药JWL状态方程参数的确定[J].火炸药学报,2012,35(5):49.
[18]林谋金,马宏昊,沈兆武,等.RDX基铝纤维炸药水下爆炸的能量分析[J].火炸药学报,2013,36(1):17.
 LIN Mou-jin,MA Hong-hao,SHEN Zhao-wu,et al.Analysis on Explosion Energy of Aluminum Fiber Explosive on Underwater Detonation[J].,2013,36(4):17.
[19]杨亚东,李向东,王辉,等.RDX基含铝炸药和TNT浅层土壤中爆炸开坑的数值模拟与试验[J].火炸药学报,2013,36(2):24.
 YANG Ya-dong,LI Xiang-dong,WANG Hui,et al.Numerical Simulation and Experiment of Craters Formed by RDX-based Aluminized Explosive and TNT in Shallow Soil[J].,2013,36(4):24.
[20]冯晓军,王晓峰,李媛媛,等.铝粉粒度和爆炸环境对含铝炸药爆炸能量的影响[J].火炸药学报,2013,36(6):24.
 FENG Xiao-jun,WANG Xiao-feng,LI Yuan-yuan,et al.Effect of Aluminum Particle Size and Explosion Atmosphere on the Energy of Explosion of Aluminized Explosive[J].,2013,36(4):24.

备注/Memo

备注/Memo:
收稿日期:2019-01-01;改回日期:2019-01-30。
基金项目:国家自然科学基金(No.11602248);NSAF基金(No.U1630113)
作者简介:裴红波(1987-),男,博士,副研究员,从事炸药爆轰性能测试研究。E-mail:hongbo2751@sina.com
更新日期/Last Update: 1900-01-01