|本期目录/Table of Contents|

[1]胡义文,郑启龙,宋秀铎,等.叠氮聚醚推进剂低温黏弹特性及其冲击损伤行为[J].火炸药学报,2019,42(4):368-374.[doi:10.14077/j.issn.1007-7812.2019.04.009]
 HU Yi-wen,ZHENG Qi-long,SONG Xiu-duo,et al.Viscoelasticity and Impact Damage Behavior of Azido Polyether Propellant at Low Temperature[J].,2019,42(4):368-374.[doi:10.14077/j.issn.1007-7812.2019.04.009]
点击复制

叠氮聚醚推进剂低温黏弹特性及其冲击损伤行为()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第4期
页码:
368-374
栏目:
出版日期:
2019-08-31

文章信息/Info

Title:
Viscoelasticity and Impact Damage Behavior of Azido Polyether Propellant at Low Temperature
作者:
胡义文 郑启龙 宋秀铎 鲍远鹏 王江宁 庞维强 周伟良
1. 西安近代化学研究所, 陕西 西安 710065;
2. 南京理工大学化工学院, 江苏 南京 210094)
Author(s):
HU Yi-wen ZHENG Qi-long SONG Xiu-duo BAO Yuan-peng WANG Jiang-ning PANG Wei-qiang ZHOU Wei-liang
1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
2. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
物理化学叠氮聚醚推进剂黏弹特性临界温度冲击损伤行为
Keywords:
physical chemistryazido polyether propellantviscoelasticitycritical transition temperatureimpact damage behavior
分类号:
TJ55;V512
DOI:
10.14077/j.issn.1007-7812.2019.04.009
文献标志码:
-
摘要:
为考察叠氮聚醚推进剂在点火过程中低温和高频加载下的瞬态黏弹性及其受冲击损伤特性,通过建立模量主曲线分析了不同配方推进剂在低温和高频加载下的黏弹特性,并采用冲击加载试验研究其在低温冲击载荷下的损伤行为。结果表明,随着加载频率升高,叠氮聚醚推进剂黏弹性质明显改变,高弹态向玻璃态转变的临界温度(Tc)移向高温;推进剂配方在-40℃和103 Hz的冲击加载条件下,玻璃化转变温度在-42.4、-46.7和-50.8℃的3个配方,其Tc分别为-29.1、-34.9和-38.2℃;推进剂基体由高弹态转变为玻璃态,2 J冲击能量下可以通过X射线微层析成像技术(X-μCT)观察到药柱结构中高氯酸铵(AP)晶体出现严重破损,其破损裂纹与处于玻璃态基体裂纹贯通扩大,进而引起试样宏观断裂;而在-20℃和103 Hz作用下时,处于高弹态的配方在冲击作用下只观察到AP晶体出现微裂纹。
Abstract:
In order to understand the viscoelasticity and impact damage characteristics of azido polyether propellant in the ignition process under low temperature and high loading frequency,dynamic mechanical analysis, impact loading test and X-ray micro-tomography (X-μCT) were employed to investigate the dynamic mechanical properties, impact fracture and damage behavior. The results revealed that the critical transition temperature (Tc) shifted to high temperatures with the increase of loading frequency, thus leading to the obvious deterioration of viscoelasticity. Under the conditions of-40℃ and 103 Hz,the corresponding Tc of the samples with glass transition temperature of -42.4, -46.7 and -50.8℃ were determined to -29.1, -34.9 and -38.2℃, respectively. It was also observed by X-μCT that the ammonium perchlorate (AP) particles in glassy azide polyether propellants were seriously damaged under an impact energy of 2 J, and the cracks between AP particles and the glassy matrix coalesced to generate macroscopic fractures of propellant samples. On the other side, under the condition of -20℃ and 103 Hz, at which the samples were in high elastic state, the impact only caused microcracks of the AP particles.

参考文献/References:

[1] 王宁飞,魏卫. 固体推进剂高过载冲击动力性能研究[J]. 火炸药学报,2002,25(1):19-21. WANG Ning-fei, WEI Wei. Research status for dynamic mechanical properties of solid propellants under high-overloads[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2002, 25(1):19-21.
[2] 郑剑. 高能固体推进剂性能及配方设计专家[M]. 北京:国防工业出版社,2014.
[3] Stacer R G, Husband D M. Molecular structure of the ideal solid propellant binder[J]. Propellants, Explosives, Pyrotechnics, 1991, 16(4):167-176.
[4] 于洋,王宁飞,张平. 一种自由装填式组合药柱的低温三维结构完整性分析[J]. 固体火箭技术,2007,30(1):34-38. YU Yang, WANG Ning-fei, ZHANG Ping. Analysis on three-dimensional structural integrity of a free loading mixed grain under low temperature environment[J]. Journal of Solid Rocket Technology, 2007, 30(1):34-38.
[5] 赖建伟,常新龙,龙兵,等. HTPB推进剂的低温力学性能[J]. 火炸药学报,2012,35(3):80-83. LAI Jian-wei, CHANG Xin-long, LONG Bing, et al. Low temperature mechanical properties of HTPB propellant[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2012, 35(3):80-83.
[6] Tussiwand G S, Saouma V E, Terzenbach R, et al. Fracture mechanics of composite solid rocket propellant grains:material testing[J]. Journal of Propulsion and Power, 2009, 25(1):60-73.
[7] Jeremic R. Some aspects of time-temperature superposition principle applied for predicting mechanical properties of solid rocket propellants[J]. Propellants, Explosives, Pyrotechnics, 1999, 24(4):221-223.
[8] Stacer R G, Husband D M. Molecular structure of the ideal solid propellant binder[J]. Propellants, Explosives, Pyrotechnics, 1991, 16(4):167-176.
[9] 刘承武,阳建红,邓凯,等. HTPB推进剂温度冲击环境下损伤特性的声发射试验[J]. 无损检测,2011,33(1):47-49. LIU Cheng-wu, YANG Jian-hong, DENG Kai, et al. The acoustic emission testing of damage properties of HTPB solid propellant under temperature shock[J]. Nondestructive Testing, 2011, 31(3):47-49.
[10] Skidmore C B,Phillips D S,Howe P M, et al. The evolution of microstructural changes in pressed HMX explosives[C]//11th International Detonation Symposium. Snowmass:AIAA, 1998:3473.
[11] 庞爱民,郑剑. 高能固体推进技术未来发展展望[J]. 固体火箭技术,2002,25(2):289-293. PANG AI-min, ZHENG Jian. Prospect of the research and development of high energy solid propellant technology[J]. Journal of Solid Rocket Technology, 2002, 25(2):289-293.
[12] 蔚红建,付小龙,樊学忠,等. GAP及GAP推进剂研究新进展[J]. 飞航导弹,2010,11:90-93. YU Hong-jian, FU Xiao-long, FAN Xue-zhong, et al. New progress in research of GAP and its propellant[J]. Journal of Aerodynamic Missile, 2010, 11:90-93.
[13] Hu Yi-wen, Jian Xiao-xia, Zhou Wei-liang, et al. Microphase separation and mechanical performance of thermoplastic elastomers based on poly(glycidylazide)/poly(oxytetramethylene glycol)[J]. Polymer Engineering and Science, 2018, 58(S1):167-173.
[14] Byoung S M. A study on the triazole crosslinked polymeric binder based on glycidyl azide polymer and dipolarophile curing agents[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(1):59-68.
[15] 张旭东,李建民,杨荣杰,等. 乙二胺反应型包覆硝酸铵及其在叠氮聚醚推进剂中的应用[J]. 火炸药学报,2010,33(4):14-18. ZHANG Xu-dong, LI Jian-min, YANG Rong-jie, et al. Ammonium nitrate reactively coated with ehylenediamine and its application in azido polyether propellants[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2010, 33(4):14-18.
[16] 郑启龙,刘海涛,胡义文,等. 低温下叠氮聚醚推进剂冲击损伤特性与动态力学性能[J]. 含能材料,2017,25(5):354-359. ZHENG Qi-long, LIU Hai-tao, HU Yi-wen, et al. Impact damage and dynamic mechanical behaviors of azido polyether propellant at low temperature[J]. Chinese Journal of Energetic Materials, 2017, 25(5):354-359.
[17] 过梅丽. 高聚物与复合材料的动态力学热分析[M]. 北京:化学工业出版社,2002.
[18] 王连心,薛金强,何伟国,等. BuNENA含能增塑剂的性能及应用[J]. 化学推进剂与高分子材料,2014,12(1):1-22. WANG Lian-xin, XUE Jin-qiang, HE Wei-guo, et al. The performance and application of BuNENA energetic plasticizer[J]. Chemical Propellants and Polymeric Materials, 2014, 12(1):1-22.
[19] 秦亚萍,刘子如,孔扬辉,等. 含能黏结剂低温动态力学性能的临界温度[J]. 火炸药学报,1999,22(3):46-49. QIN Ya-ping, LIU Zi-ru, KONG Yang-hui, et al. Critical temperature of dynamic mechanical performance of some energetic binders at low temperature[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 1999, 22(3):46-49.

相似文献/References:

[1]何卫东,董朝阳.高分子钝感发射药的低温感机理[J].火炸药学报,2007,30(1):9.
[2]张 昊,彭 松,庞爱民,等.NEPE推进剂老化过程中结构与力学性能的关系[J].火炸药学报,2007,30(1):13.
[3]路向辉,曹继平,史爱娟,等.表面处理芳纶纤维在丁羟橡胶中的应用[J].火炸药学报,2007,30(1):21.
[4]李春迎,王 宏,孙 美,等.遥感FTIR光谱技术在固体推进剂羽焰测试中的应用[J].火炸药学报,2007,30(1):28.
[5]杜美娜,罗运军.RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36.
[6]王国栋,刘玉存.神经网络在炸药晶体密度预测中的应用[J].火炸药学报,2007,30(1):57.
[7]周诚,黄新萍,周彦水,等.FOX-7的晶体结构和热分解特性[J].火炸药学报,2007,30(1):60.
[8]张秋越,孟子晖,肖小兵,等.用分子烙印聚合物吸附溶液中的TNT[J].火炸药学报,2007,30(1):64.
[9]崔建兰,张 漪,曹端林.三羟甲基丙烷三硝酸酯的热分解性能[J].火炸药学报,2007,30(1):71.
[10]李进华,孙兆懿.四氧化二氮胶体饱和蒸气压的测试及分析[J].火炸药学报,2007,30(1):74.

备注/Memo

备注/Memo:
收稿日期:2018-11-16;改回日期:2019-01-23。
基金项目:国家重点基础研究规划项目(No.613XXX)
作者简介:胡义文(1989-),男,博士,从事固体推进剂技术研究。E-mail:huyiwenn123@163.com
通讯作者:周伟良(1963-),男,研究员,从事含能材料研究。E-mail:wlzhou331@163.com
更新日期/Last Update: 1900-01-01