|本期目录/Table of Contents|

[1]刘卉,张英杰,张路遥,等.RDX和HMX的二氟氨基衍生物结构与性能的密度泛函理论研究[J].火炸药学报,2019,42(4):363-367.[doi:10.14077/j.issn.1007-7812.2019.04.008]
 LIU Hui,ZHANG Ying-jie,ZHANG Lu-yao,et al.DFT Study on the Structures and Properties of Difluoramino Derivatives of RDX and HMX[J].,2019,42(4):363-367.[doi:10.14077/j.issn.1007-7812.2019.04.008]
点击复制

RDX和HMX的二氟氨基衍生物结构与性能的密度泛函理论研究()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第4期
页码:
363-367
栏目:
出版日期:
2019-08-31

文章信息/Info

Title:
DFT Study on the Structures and Properties of Difluoramino Derivatives of RDX and HMX
作者:
刘卉 张英杰 张路遥 郑文芳 潘仁明
1. 南京理工大学化工学院, 江苏 南京 210094;
2. 甘肃银光化学工业集团有限公司, 甘肃 白银 730900;
3. 上海航天化工应用研究所, 上海 313002
Author(s):
LIU Hui ZHANG Ying-jie ZHANG Lu-yao ZHENG Wen-fang PAN Ren-ming
1. School of Chemical and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2. Gansu Yinguang Chemical Industry Group Co., Ltd., Baiyin Gansu 730900, China;
3. Shanghai Institute of Aerospace Chemical Application, Shanghai 313002, China
关键词:
量子化学RDXHMX—NF2DFT二氟氨基化合物爆轰性能高能量密度材料
Keywords:
quantum chemistryRDXHMX-NF2DFT-NF2 derivativedetonation propertieshigh energy clensity material
分类号:
TJ55;O641
DOI:
10.14077/j.issn.1007-7812.2019.04.008
文献标志码:
-
摘要:
应用密度泛函理论(DFT) B3LYP/6-31G**方法对设计的RDX和HMX的-NF2衍生物进行了理论研究;设计等键反应并根据Hess定律预测了固态生成焓;应用Politzer校正方法计算了密度ρ;由K-J方程估算了爆热(Q)、爆速(D)和爆压(p),讨论了-NF2对HOF、ρQ、Dp的影响;由键离解能(BDE)和撞击感度(H50)评价了化合物的稳定性,并探讨了可能的热分解引发机理。结果表明,-NF2取代会降低生成焓;化合物的密度范围为1.96~2.34 g/cm3,均高于RDX和HMX的密度;所有衍生物的D均在8.85~9.98 km/s,p均在35.07~50.99 GPa范围,绝大部分化合物的D和p优于RDX和HMX,-NF2D和p的贡献较大;所有化合物的BDE均在90~160 kJ/mol,均满足高能材料稳定性的要求,预测的H50值的大小顺序基本上与BDE结果相一致,化合物中引入更多的-NF2通常会降低其稳定性。因此,大多数RDX和HMX的-NF2衍生物具有很好的爆轰性能与稳定性,为潜在的高能量密度材料。
Abstract:
The -NF2 substitution derivatives of RDX and HMX were studied at the B3LYP/6-31G** level of density functional theory. The condensed-phase heats of formation(HOF) were predicted with isodesmic reactions and Hess law. The density (ρ) was calculated by the Politzer method. The heat of explosion(Q), detonation velocity (D), and detonation pressure (p) were estimated by the K-J equation. The effects of -NF2 on HOF, ρ, Q, D, and p were discussed. The stability of compounds was evaluated using bond dissociation energies (BDE) and impact sensitivities (H50). The possible initiation mechanism of thermal decomposition was discussed. The results show that -NF2 substitution can reduce the heats of formation. The ρ of the compounds ranges from 1.96 to 2.34 g/cm3, which is higher than that of RDX and HMX. The D of all derivatives is 8.85-9.98 km/s, and the p is in the range of 35.07-50.99 GPa. Most compounds have better D and p than RDX and HMX, and -NF2 contributes a lot to D and p. The BDE of all compounds is in the range of 90-160 kJ/mol, which meets the requirements of high-energy material stability. The sequence of the predicted H50 values is basically consistent with the BDE results. The introduction of more -NF2 groups in the compounds usually reduces the stability. Therefore, most of the -NF2 derivatives of RDX and HMX have good detonation performance and stability and can be promising candidates of high energy density compounds.

参考文献/References:

[1] Liu H, Wang F, Gong X D, et al. Theoretical studies on the structures, densities, detonation properties and thermal stability of 2,4,6-trinitropyridine N-oxide (TNPyO) and its derivatives[J]. Mol Simulat, 2013, 39:123-128.
[2] Chapman R D, Welker M F, Kreutzberger C B. Difluoramination of heterocyclic ketones:control of microbasicity[J]. J Org Chem, 1998, 63:1566-1570.
[3] Chapman R D, Groshens T J. Method for making 3,3,7,7-tetrakis(difluoramino)octahydro-1,5-dinitro-1,5-diazocine (HNFX):US, US7632943[P]. 2009.
[4] Kuo K K, Young G. Characterization of combustion behavior of newly formulated NF2-based solid propellants[J]. Proceedings of the Combustion Institute, 2002, 29:2947-2954.
[5] Kamlet M J, Jacobs S J. Chemistry of detonations. I. Simple method for calculating detonation properties of C-H-N-O explosives[J]. J Chem Phys, 1968, 48:23-35.
[6] Politzer P, Martinez J, Murray J S, et al. An electrostatic interaction correction for improved crystal density predictions[J]. Mol Phys, 2009, 107:2095-2101.
[7] 贡雪东. Potden v.2.0[CP/DK]. 南京:南京理工大学, 2007.
[8] Lide D R. CRC handbook of chemistry and physics[M]. Boca Raton, Florida:CRC Press, 2003-2004.
[9] Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of complete basis set methods for calculation of enthalpies of formation[J]. Journal of Chemical Physics, 1998, 108(2):692-697.
[10] Atkins P W. Physical chemistry. 2nd ed[M]. Oxford:Oxford University Press, 1982.
[11] Rice B M, Pai S V, Hare J. Predicting heats of formation of energetic materials using quantum mechanical calculations[J]. Combust Flame, 1999, 118:445-458.
[12] Politzer P, Martinez J, Lane P, et al. Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation[J]. Int J Quantum Chem, 2005, 105:341-347.
[13] Keshavarz M H. Theoretical prediction of condensed phase heat of formation of nitramines, nitrate esters, nitroaliphatics and related energetic compounds[J]. J Hazard Mater, 2006, 136:145-150.
[14] 冯增国. 重新唤起人们兴趣的二氟氨基及其化合物[J]. 化学进展, 2000, 12:171-178.FENG Zeng-guo. Renewed interests in difluoramino and its compounds[J]. Progress In Chemistry, 2000, 12:171-178.
[15] Byrd E F C, Rice B M. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations[J]. J Phys Chem A, 2006, 110:1005-1013.
[16] Jaidann M, Roy S, Abou-Rachid H, et al. A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives[J]. J Hazard Mater, 2010, 176:165-173.
[17] Politzer P, Martinez J, Murray J S, et al. An electrostatic interaction correction for improved crystal density predictions[J]. Mol Phys, 2009, 107:2095-2101.
[18] Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation[J]. J Chem Phys, 1997, 106:1063-1079.
[19] 肖鹤鸣, 许晓娟, 邱玲. 高能量密度化合物的理论设计[M]. 北京:科学出版社, 2008.
[20] Rice B M, Hare J J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules[J]. J Phys Chem A, 2002, 106:1770-1783.
[21] Wei T, Zhu W H, Zhang X W, et al. Molecular design of 1,2,4,5-tetrazine-based high-energy density materials[J]. J Phys Chem A, 2009, 113:9404-9412.

相似文献/References:

[1]杜美娜,罗运军.RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36.
[2]潘新洲,郑 剑,郭 翔,等.RDX/PEG悬浮液的流变性能[J].火炸药学报,2007,30(2):5.
[3]周润强,刘德新,曹端林,等.硝酸脲与RDX共晶炸药研究[J].火炸药学报,2007,30(2):49.
[4]陆明,周新利.RDX的TNT包覆钝感研究[J].火炸药学报,2006,29(6):16.
[5]刘子如,刘艳,范夕萍,等.RDX和HMX的热分解Ⅲ.分解机理[J].火炸药学报,2006,29(4):14.
[6]徐皖育,何卫东,张颖.高温长贮条件下太根发射药中RDX的迁移行为[J].火炸药学报,2006,29(3):29.
[7]徐皖育,何卫东,张颖.含RDX高能太根发射药的热分解性能[J].火炸药学报,2006,29(2):63.
[8]张永旭,吕春绪,刘大斌.重结晶法制备纳米RDX[J].火炸药学报,2005,28(1):49.
[9]蔡昇,王泽山.RDX改性双基球形小粒药的燃烧特性[J].火炸药学报,2005,28(2):26.
[10]薛爱莲,黄寅生,康聪成,等.纳米LaCoO3对RDX基混合炸药的热分解特性和感度的影响[J].火炸药学报,2005,28(2):75.
[11]侯素青,曹端林,张文艳,等.氮杂杯[4]芳烃主体与RDX客体分子间相互作用的密度泛函理论[J].火炸药学报,2008,31(5):19.

备注/Memo

备注/Memo:
收稿日期:2018-09-14;改回日期:2019-04-10。
基金项目:国家自然科学基金(No.21473130);国家博士后基金项目(No.2015M570449)
作者简介:刘卉(1973-),女,博士,副教授,从事含能材料理论设计与结构性能研究。E-mail:liuhui@njust.edu.cn
通讯作者:张路遥(1966-),男,博士,研究员,从事含能材料设计与工艺研究。E-mail:mhxccj@163.com
更新日期/Last Update: 1900-01-01