|本期目录/Table of Contents|

[1]胥会祥,龚建良,黄永刚,等.纳米铝粉在高密度碳氢燃料HF-X中的分散特性[J].火炸药学报,2019,42(4):352-357.[doi:10.14077/j.issn.1007-7812.2019.04.006]
 XU Hui-xiang,GONG Jian-liang,HUANG Yong-gang,et al.Dispersion of Nano-Al in the High-density Hydrocarbon Fuels HF-X Suspension[J].,2019,42(4):352-357.[doi:10.14077/j.issn.1007-7812.2019.04.006]
点击复制

纳米铝粉在高密度碳氢燃料HF-X中的分散特性()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第4期
页码:
352-357
栏目:
出版日期:
2019-08-31

文章信息/Info

Title:
Dispersion of Nano-Al in the High-density Hydrocarbon Fuels HF-X Suspension
作者:
胥会祥 龚建良 黄永刚 李勇宏 周文静 赵凤起 庞维强 徐司雨 杜咏梅
1. 火炸药燃烧与爆炸技术重点实验室, 陕西 西安 710065;
2. 西安近代化学研究所, 陕西 西安 710065;
3. 四川航天川南火工技术有限公司, 四川 泸州 646000
Author(s):
XU Hui-xiang GONG Jian-liang HUANG Yong-gang LI Yong-hong ZHOU Wen-jing ZHAO Feng-qi PANG Wei-qiang XU Si-yu DU Yong-mei
1. Science and Technology on Combustion and Explosion Laboratory, Xi’an 710065, China;
2. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
3. Sichuan Aerospace South Sichuan Pyrotechnical Technology Co., Ltd., Luzhou Sichuan 646000, China
关键词:
物理化学纳米铝粉高密度碳氢燃料分散性接触角沉降速率
Keywords:
physical chemistrynano-aluminumhigh-density hydrocarbon fuelsdispersioncontact anglesedimentation rate
分类号:
TJ55;O64
DOI:
10.14077/j.issn.1007-7812.2019.04.006
文献标志码:
-
摘要:
为提高纳米铝粉在高密度碳氢燃料(HF-X)悬浮液中的分散稳定性,通过沉降速率法,探讨了分散剂含量、分散温度、纳米铝粉含量和粒度、悬浮液超声分散功率和超声时间对纳米铝粉在HF-X中分散性的影响;采用SEM比较了分散前后纳米铝粉的形貌,测试了纳米铝粉在分散剂/HF-X溶液中的接触角,分析了分散剂的影响机理。结果表明,含胺锚固基团的聚合物(HS)分散剂的悬浮液稳定分散时间明显长于含嵌段共聚物(HT)分散剂;随纳米铝粉含量和粒度增大,其在HF-X悬浮液中沉降速率增大,其中,在悬浮液中纳米铝粉的最大质量分数是7.5%,而达到10%就成为浆状物;随分散剂HS50质量浓度增加,纳米铝粉的沉降速率降低;HS50质量浓度为0.02 g/mL时,纳米铝粉沉降速率为9.85×10-6 g/(cm2·s),趋于恒定;随超声分散功率和时间增大,纳米铝粉的沉降速率降低,其对纳米铝粉的分散稳定性影响显著,而分散温度的影响最小;纳米铝粉在HS/HF-X溶液中的接触角明显大于在HT/HF-X中的接触角,含HS系列分散剂较好的分散稳定性与其高分子链之间对纳米铝粉的空间阻滞作用有关。
Abstract:
In order to improve the dispersion stability of nano-aluminum in high-density hydrocarbon fuels(HF-X) suspension, the effect of the dispersant mass fraction, dispersion temperature, mass fraction and granularity of nano-Al, ultrasonic dispersion power and time of nano-Al in HF-X suspension on the dispersibility of nano-Al were investigated by sedimentation rate test. The morphology of nano-aluminum powder before and after dispersion was compared by SEM, the contact angle of nano-Al in the dispersant/HF-X solution was tested and the influence mechanism of dispersant was analyzed. The results show that the dispersion time of suspension of polymer dispersant containing amine anchoring group (HS) is longer than that of dispersant containing block copolymer (HT). The sedimentation rate of nano-aluminum in the HF-X suspension increases with the increase in the mass fraction and particle size of nano-aluminum powder, among them, the maximum mass fraction of nano-aluminum powder in HF-X suspension is up to 7.5%, and the mixture becomes paste when it is 10%. With increasing the dispersant HS50 mass concentration, the sedimentation rate of nano-aluminum powder decreases. When mass concentration of HS50 is 0.02 g/mL, the sedimentation rate is 9.85×10-6 g/(cm2·s), which tends to be constant. With increasing the ultrasonic dispersion power and time, the sedimentation rate of nano-aluminum powder decreases, which has a significant effect on the dispersion stability, while the dispersion temperature has little influence. The contact angle of nano-Al in HS/HF-X solution is much larger than that in HT/HF-X solution. The HS-series dispersants have better dispersion stability, which is related to the spatial retardation of polymer chain to nano-aluminum powder.

参考文献/References:

[1] Jayraman K,Anand K V,Chakravarthy S R,et al. Effect of nano-aluminum in plateau-burning and catalyzed composite solid propellant combustion[J]. Combustion and Flame,2009,156(8):1662-1673.
[2] 赵凤起,覃光明,蔡炳源.纳米材料在火炸药中的应用研究现状及发展方向[J].火炸药学报,2001,24(4):61-65.ZHAO Feng-qi,QIN Guang-ming,CAI Bing-yuan. Research status and development trends of nanometer materials in the application of propellants and explosives[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2001,24(4):61-65.
[3] 王晓峰,郝仲璋.炸药发展中的新技术[J]. 火炸药学报,2002,25(4):35-38WANG Xiao-feng, HAO Zhong-zhang. New development of explosives technology[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2002,25(4):35-38
[4] 董素荣,陈智刚,周海英,等. 弹药装药质量机理研究[J]. 弹箭与制导学报,2005,25(2):59-60.DONG Su-rong,CHEN Zhi-gang,ZHOU Hai-ying,et al. Research on filling quality mechanism of ammunition[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2005,25(2):59-60.
[5] 牛国涛,王淑萍,金大勇,等. 纳米铝对RDX基炸药水下爆炸能量的影响[J].火炸药学报,2015,38(1):64-68.NIU Guo-tao,WANG Shu-ping,JIN Da-yong,et al. Influence of the nano-aluminium on underwater energy of RDX-based pressed explosive[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2015,38(1):64-68.
[6] Komarov V F,Sakovich G V,Vorozhtsov A B,et al.The role of nanometals in enhancement of the explosion performance of composite explosives[C]//40th International Annual Conference of ICT. Karlsruhe:ICT,2009,108:1-8.
[7] 智小琦.一次引爆型云爆剂的爆速计算[J]. 火炸药学报,2005,28(3):76-78.ZHI Xiao-qi. Computation on detonation velocity of single event FAE[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2005,28(3):76-78.
[8] 宋玲利,张仁元,毛凌波.纳米铝粉颗粒分散稳定性的研究[J]. 中国粉体技术,2011,17(2):53-56.SONG Ling-li,ZHANG Ren-yuan,MAO Ling-bo.Study on dispersive stability of aluminium nano-particles[J]. China Powder Science And Technology,2011,17(2):53-56.
[9] 刘香翠,朱慧,张炜,等.纳米铝粉在煤油中的均分散技术[J]. 推进技术,2005,26(2):184-187.LIU Xiang-cui,ZHU Hui,ZHANG Wei,et al.Study on dispersion of nano-aluminum powder in kerosene[J]. Journal of Propellant Technology, 2005,26(2):184-187.
[10] 范克雷维伦.聚合物的性质一性质的估算及其与化学结构的关系[M].许元泽,赵得禄,吴大诚,译.北京:科学出版社,1981.
[11] 曾亮,焦清介,任慧,等. 纳米铝粉粒径对活性量及氧化层厚度的影响[J]. 火炸药学报,2011,34(4):26-29.ZENG Liang,JIAO Qing-jie,REN Hui,et al. Effect of particle size of nano-aluminium powder on oxide film thickness and active aluminium content[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2011,34(4):26-29.
[12] 任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005.

相似文献/References:

[1]何卫东,董朝阳.高分子钝感发射药的低温感机理[J].火炸药学报,2007,30(1):9.
[2]张 昊,彭 松,庞爱民,等.NEPE推进剂老化过程中结构与力学性能的关系[J].火炸药学报,2007,30(1):13.
[3]路向辉,曹继平,史爱娟,等.表面处理芳纶纤维在丁羟橡胶中的应用[J].火炸药学报,2007,30(1):21.
[4]李春迎,王 宏,孙 美,等.遥感FTIR光谱技术在固体推进剂羽焰测试中的应用[J].火炸药学报,2007,30(1):28.
[5]杜美娜,罗运军.RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36.
[6]王国栋,刘玉存.神经网络在炸药晶体密度预测中的应用[J].火炸药学报,2007,30(1):57.
[7]周诚,黄新萍,周彦水,等.FOX-7的晶体结构和热分解特性[J].火炸药学报,2007,30(1):60.
[8]张秋越,孟子晖,肖小兵,等.用分子烙印聚合物吸附溶液中的TNT[J].火炸药学报,2007,30(1):64.
[9]崔建兰,张 漪,曹端林.三羟甲基丙烷三硝酸酯的热分解性能[J].火炸药学报,2007,30(1):71.
[10]李进华,孙兆懿.四氧化二氮胶体饱和蒸气压的测试及分析[J].火炸药学报,2007,30(1):74.
[11]梁磊,王晶禹,董军,等.纳米铝粉对硝胺炸药热分解催化性能的影响[J].火炸药学报,2009,32(6):75.
[12]何丽蓉,肖乐勤,菅晓霞,等.n-Al/n-PTFE复合物的热行为[J].火炸药学报,2012,35(5):29.
[13]秦钊,Christian PARAVAN,Giovanni COLOMOBO,等.氟化物包覆纳米铝粉对HTPB燃料燃烧性能的影响[J].火炸药学报,2014,37(2):61.
 QIN Zhao,Christian PARAVAN,Giovanni COLOMOBO,et al.Effect of Fluorides Coated Nano aluminum Powder on Combustion Properties of HTPB Based Fuels[J].,2014,37(4):61.

备注/Memo

备注/Memo:
收稿日期:2018-06-10;改回日期:2019-05-12。
基金项目:国家自然科学基金(No.21473130)
作者简介:胥会祥(1974-),男,博士,研究员,从事推进剂配方和工艺研究。E-mail:xhx204@163.com
更新日期/Last Update: 1900-01-01