|本期目录/Table of Contents|

[1]丁亚军,张硕,应三九,等.微孔可燃材料的制备与燃烧性能[J].火炸药学报,2019,42(4):335-340.[doi:10.14077/j.issn.1007-7812.2019.04.003]
 DING Ya-jun,ZHANG Shuo,YING San-jiu,et al.Fabrication and Combustion Properties of TEGN/RDX Based Microcellular Combustible Objects[J].,2019,42(4):335-340.[doi:10.14077/j.issn.1007-7812.2019.04.003]
点击复制

微孔可燃材料的制备与燃烧性能()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第4期
页码:
335-340
栏目:
出版日期:
2019-08-31

文章信息/Info

Title:
Fabrication and Combustion Properties of TEGN/RDX Based Microcellular Combustible Objects
作者:
丁亚军 张硕 应三九 肖忠良
特种能源材料教育部重点实验室(南京理工大学), 江苏 南京 210094
Author(s):
DING Ya-jun ZHANG Shuo YING San-jiu XIAO Zhong-liang
Key Laboratory of Special Energy Materials(Nanjing University of Science and Technology), Ministry of Education, Nanjing 210094, China
关键词:
材料科学微孔可燃材料超临界二氧化碳泡孔结构燃烧性能
Keywords:
material sciencemicrocellular combustible objectsSC-CO2cell structurecombustion property
分类号:
TJ55;O34
DOI:
10.14077/j.issn.1007-7812.2019.04.003
文献标志码:
-
摘要:
为改善可燃材料的燃烧性能,利用超临界二氧化碳发泡技术制备了太根/黑索今基的微孔可燃材料。通过扫描电子显微镜对其内部的泡孔结构进行了表征,并通过密闭爆发器试验测试其燃烧性能。扫描电镜结果表明,该方法制得的微孔可燃材料具有大量的微米级别的微孔结构,提高了发射药内部的比表面积。90℃的发泡温度和15 min的发泡时间都能够提高材料产品内部泡孔的直径和密度。密闭爆发器试验表明,微孔可燃材料具有比原样品更快的燃烧速度,燃烧结束点时间由原始样品的16.49 ms降至14.66 ms,降低了11%;另外由于较高的发泡温度和时间增大了比表面积,黑索今含量的加大提高了发射药的氧平衡,微孔可燃材料燃烧时燃气的传播速率得到改善。表明超临界二氧化碳发泡技术制得的微孔可燃材料在武器上具有很好的应用前景。
Abstract:
In order to improve the combustion properties of combustible objects, the microcellular combustible objects were fabricated by the supercritical carbon dioxide (SC-CO2) foaming technology. Scanning electron microscope (SEM) and the closed vessel tests were applied to characterize the cell structure and combustion properties of microcellular combustible objects. The results demonstrated that there were numerous micron-scale cells in the microcellular combustible objects fabricated by the SC-CO2 foaming technology, which enhanced the specific surface area. Both the foaming temperature of 90℃ and the foaming time of 15min led to the increase of the cell density and diameter. The closed vessel tests indicated that the microcellular combustible objects performed the shorter burning time (14.66 ms) than that of original sample (16.49 ms), and the decrement was 11%. The higher foaming temperature, the longer foaming time and the higher RDX mass fraction promoted the spread rate of burning gas of the microcellular combustible objects in burning process because of the higher specific surface area and oxygen balance. Therefore, the microcellular combustible objects foamed by SC-CO2 had a very good application foreground in weapons.

参考文献/References:

[1] Peshave J, Haridwar S. Determination of chemical life of combustible cartridge cases[J]. Journal of Energetic Materials, 2002, 20(4):345-356.
[2] Shedge M, Patel C, Tadkod S, et al. Polyvinyl acetate resin as a binder effecting mechanical and combustion properties of combustible cartridge case formulations[J]. Defence Science Journal, 2008, 58(3):390-397.
[3] Wang B, Liao X, Wang Z, et al. Effects of particle size and morphology of NQ on thermal and combustion properties of triple-base propellants[J]. Combustion and Flame, 2018, 193:123-132.
[4] Böhnlein-Mauß J, Eberhardt A, Fischer T. Foamed propellants[J]. Propellants, Explosives, Pyrotechnics, 2002(3), 27:156-160.
[5] Böhnlein-Mauß J, Kröber H. Technology of foamed propellants[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(3):239-244.
[6] Yang W, Yang J, Zhao Y, et al. Preparation and structure study of water-blown polyurethane/RDX gun propellant foams[J]. Journal of Energetic Materials, 2018, 36(1):121-126.
[7] Li Y, Yang W, Ying S, et al. Combustion of gas-permeable gun propellants[J]. Journal of Energetic Materials, 2015, 33(3):167-179.
[8] Yang W, Li Y, Ying S. Burning characteristics of microcellular combustible objects fabricated by a confined foaming process[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(1):27-32.
[9] Ding Y, Ying S. Cell structure, density and impact strength of cellulose acetate foamed with supercritical carbon dioxide[J]. Cellular Polymer, 2015, 34(6):339-352.
[10] Tsivintzelis I, Sanxaridou G, Pavlidou E, et al. Foaming of polymers with supercritical fluids:a thermodynamic investigation[J]. The Journal of Supercritical Fluids, 2016, 110:240-250.
[11] Elghafour A, Radwan M, Mostafa H, et al. Highly energetic nitramines:a novel platonizing agent for double-base propellants with superior combustion characteristics[J]. Fuel, 2018, 227:478-484.

相似文献/References:

[1]王 昕.美国不敏感混合炸药的发展现状[J].火炸药学报,2007,30(2):78.
[2]田广丰,康建成,胥会祥,等.小型推进剂管状装药药形尺寸数字化检测技术[J].火炸药学报,2006,29(4):61.
[3]王海鹰,李斌栋,吕春绪,等.硼酸酯表面活性剂的研究及应用[J].火炸药学报,2006,29(3):36.
[4]赵省向,戴致鑫,张成伟,等.DNTF及其低共熔物对PBX可压性的影响[J].火炸药学报,2006,29(3):39.
[5]王保国,张景林,陈亚芳,等.含超细高氯酸铵核-壳型复合材料的制备[J].火炸药学报,2006,29(3):54.
[6]杨光成,聂福德,曾贵玉.超细TATB-BTF核-壳型复合粒子的制备[J].火炸药学报,2005,28(2):72.
[7]谭武军,李 明,黄 辉.RDX和HMX晶体压制方程的对比研究[J].火炸药学报,2007,30(5):8.
[8]王 昕,彭翠枝.国外六硝基六氮杂异伍兹烷的发展现状[J].火炸药学报,2007,30(5):45.
[9]陈 胜,刘云飞,姚维尚.组分对高能HTPB推进剂燃烧性能和力学性能的影响[J].火炸药学报,2007,30(5):62.
[10]唐 维,李 明,庞海燕,等.修正时间硬化理论的PBX蠕变模型及其应用[J].火炸药学报,2007,30(6):1.

备注/Memo

备注/Memo:
收稿日期:2019-01-25;改回日期:2019-02-20。
基金项目:Supported by the Opening Project of Key Laboratory of Special Energy Materials(Nanjing University of Science and Technology),Ministry of Education(No.2019SEM05)
作者简介:DING Ya-jun (1990-),male,lecturer,research direction:gun propellant.E-mail:dyj@njust.edu.cn
通讯作者:XIAO Zhong-liang (1956-),male,professor,research direction:gun propellant.E-mail:xzl@njust.edu.cn
更新日期/Last Update: 1900-01-01