|本期目录/Table of Contents|

[1]王芮,李晓萌,王晓青,等.非等温DSC法研究聚丁二烯点击化学固化动力学[J].火炸药学报,2019,42(4):328-334.[doi:10.14077/j.issn.1007-7812.2019.04.002]
 WANG Rui,LI Xiao-meng,WANG Xiao-qing,et al.Study on the Click Chemical Curing Reaction Kinetics of Polybutadiene Triazole System by Non-isothermal DSC Method[J].,2019,42(4):328-334.[doi:10.14077/j.issn.1007-7812.2019.04.002]
点击复制

非等温DSC法研究聚丁二烯点击化学固化动力学()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第4期
页码:
328-334
栏目:
出版日期:
2019-08-31

文章信息/Info

Title:
Study on the Click Chemical Curing Reaction Kinetics of Polybutadiene Triazole System by Non-isothermal DSC Method
作者:
王芮 李晓萌 王晓青 罗运军
北京理工大学材料学院, 北京 100081
Author(s):
WANG Rui LI Xiao-meng WANG Xiao-qing LUO Yun-jun
School of Materials Science, Beijing Institute of Technology, Beijing 100081, China
关键词:
物理化学高分子化学固化动力学非等温DSC聚丁二烯点击化学反应
Keywords:
physical chemistrypolymer chemistrycuring kineticsnon-isothermal DSCpolybutadieneclick chemical reaction
分类号:
TJ55;O64
DOI:
10.14077/j.issn.1007-7812.2019.04.002
文献标志码:
-
摘要:
为了更好地将聚丁二烯点击化学固化体系应用到实际工艺中,采用非等温差示扫描量热(DSC)法研究了端炔基聚丁二烯(PTPB)-三叠氮乙酸酯基丙烷(TAP)-端叠氮基聚乙二醇(APEG)体系的固化反应动力学;利用升温速率-温度外推法、Kissinger模型、Ozawa模型和Crane模型计算得到该固化体系的固化温度和动力学参数;通过n级固化动力学模型和非模型动力学(MFK)两种计算方法预测了该固化体系的等温固化行为。结果表明,若不添加催化剂,该体系60℃下固化反应活性低,固化速率非常缓慢,反应速率常数仅为3.13×10-5 min-1;当添加催化剂CuCl的质量分数为0.1%时,其反应速率常数为5.6×10-3 min-1,比端羟基聚丁二烯-甲苯二异氰酸酯(HTPB-TDI)固化体系高两个数量级;MFK预测结果与实测结果更为接近。此外,CuCl质量分数为0.1%时,该固化体系在30℃下完成固化仅需10.4 h。
Abstract:
In order to apply the click chemical curing system of polybutadiene into the practical process, the non-isothermal differential scanning calorimetry (DSC) method was used to investigate curing reaction kinetics of terminal alkynyl polybutadiene (PTPB)-triazide acetate propane (TAP)-terminal azido polyethylene glycol (APEG) system. The curing temperature and kinetic parameters of this curing system were calculated by the heating rate-temperature extrapolation method, the Kissinger model, the Ozawa model and the Crane model, respectively.The isothermal curing behavior of the curing system was predicted by nth order kinetics model and model free kinetics (MFK). The results indicate that this system has a low curing activity at 60℃ and the curing rate constant is only 3.13×10-5 min-1. When the mass fraction of the catalyst (CuCl) is 0.1%, the rate constant is 5.6×10-3 min-1, which is two orders of magnitude higher than that of the hydroxyl terminated polybutadiene-toluene diisocyanate (HTPB-TDI) curing system. The MFK prediction result is closer to the measured result.In addition, when the mass fraction of CuCl is 0.1%, the curing system requires only 10.4h to complete curing at 30℃.

参考文献/References:

[1] Iqbal M M, Liang W. Modeling the moisture effects of solid ingredients on composite propellant properties[J]. AerospaceScience and Technology, 2006, 10(8):695-699.
[2] Keicher T, Kuglstatter W, Eisele S, et al. Isocyanate-free curing of glycidyl azide polymer (GAP) with bis-propargyl-succinate (Ⅱ)[J]. Propellants, Explosives, Pyrotechnics, 2010, 34(3):210-217.
[3] Hagen T H, Jensen T L, Unneberg E, et al. Curing of glycidyl azide polymer (GAP) diol using isocyanate, isocyanate-free, synchronous dual, and sequential dual curing systems[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2):275-284.
[4] Liu F B, Zhang X L, Jiang W S, et al. Study on the curing system of polytriazole adhesive for composite solid propellant[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(4):371-378.
[5] Kolb H C,Finn M G,Sharpless K B. Click chemistry:diverse chemical function from a few good reactions[J]. Angewandte Chemie International Edition, 2001, 40:2004-2021.
[6] 邱素艳,高森,林振宇,等. 点击化学最新进展[J]. 化学进展, 2011, 23(4):637-648. QIU Su-yan, GAO Sen, LIN Zhen-yu, et al. Advances in click chemistry[J]. Progress in Chemistry, 2011, 23(4):637-648.
[7] Xue H, Gao Y, Twamley B, et al. New energetic salts based on nitrogen-containing heterocycles[J]. Chemistry of Materials, 2005, 17(1):191-198.
[8] Hu C, Guo X, Jing Y, et al. Structure and mechanical properties of crosslinked glycidyl azide polymers via click chemistry as potential binder of solid propellant[J]. Journal of Applied Polymer Science, 2014, 131(16):318-323.
[9] Li H, Zhao F Q, Yu Q, et al. Progress of click chemistry on triazole curing system and solid rocket propellant[J]. Journal of Solid Rocket Technology, 2015, 38(1):73-78.
[10] Reshmi S, Hemanth H, Gayathri S, et al. Polyether triazoles:an effective binder for ‘green’ gas generator solid propellants[J]. Polymer, 2016, 92:201-209.
[11] Sonawane S, Anniyappan M, Athar J, et al. Isocyanate-free curing of glycidyl azide polymer with bis-propargyl hydroquinone[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4):386-393.
[12] 曲正阳, 翟进贤, 张晗昱, 等. 端炔基聚乙二醇的合成及固化[J]. 火炸药学报, 2010, 33(6):61-64. QU Zheng-yang, ZHAI Jin-xian, ZHANG Han-yu, et al. Synthesis and curing research of alkyne-terminated polyethylene glycol[J]. Chinese Journal of Explosives & propellants (Huozhayao Xuebao), 2010, 33(6):61-64.
[13] 张晗昱, 翟进贤, 杨荣杰. 端叠氮基聚醚的合成及与多炔固化剂的交联反应[J]. 火炸药学报, 2012, 35(5):45-48. ZHANG Han-yu, ZHAI Jin-xian, YANG Rong-jie, et al. Synthesis of azido-terminated polyether and its cross-linking reaction with the multi-acetylene curing agent[J]. Chinese Journal of Explosives & propellants (Huozhayao Xuebao), 2012, 35(5):45-48.
[14] Hagen T H, Jensen T L, Unneberg E, et al. Curing of glycidyl azide polymer (GAP) diol using isocyanate, isocyanate-free, synchronous dual, and sequential dual curing systems[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2):275-284.
[15] Reshmi S K, Vijayalakshmi K P, Thomas D, et al. Glycidyl azide polymer crosslinked through triazoles by click chemistry:curing, mechanical and thermal properties[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(4):525-532.
[16] Li N, Zhao F Q, Luo Y, et al. Study on curing reaction thermokinetics of azide binder/bispropargyl succinate by microcalorimetry[J]. Propellants, Explosives, Pyrotechnics, 2015, 40:808-813.
[17] Sekkar V, Raunija T S K. Hydroxyl-terminated polybutadiene-based polyurethane networks as solid propellant binder-state of the art[J]. Journal of Propulsion & Power, 2015, 31(1):16-35.
[18] Gligorijevic N, Rodic V, Zivkovic S, et al. Mechanical characterization of composite solid rocket propellant based on hydroxy-terminated polybutadiene[J]. HemijskaIndustrija, 2015, 70:67-67.
[19] 陈权, 艾娇艳, 蓝承东,等. 非等温DSC法研究环氧树脂/聚硫醇体系固化动力学[J]. 热固性树脂, 2015, 30(2):17-21. CHEN Quan, AI Jiao-yan, LAN Cheng-dong, et al. Curing kinetics of epoxy resin/polymercaptan system by non-isothermal DSC method[J]. Thermosetting Resin, 2015, 30(2):17-21.
[20] 徐艺, 贺强. 非等温DSC法研究高温固化胶膜的固化动力学[J]. 材料导报, 2018, 32(31):529-531. XU Yi, HE Qiang. Curing kinetics of high temperature curing film by non-isothermal DSC method[J]. Materials Review, 2018, 32(31):529-531.
[21] 吴兴宇, 崔庆忠, 徐军. HTPB/TDI粘结体系的固化反应动力学[J]. 含能材料, 2016, 24(11):1097-1101. WU Xing-yu, CUI Qing-zhong, XU Jun. Cuiring reaction kinetics of HTPB/TDI bonding system[J]. Chinese Journal of Energetic Materials, 2016, 24(11):1097-1101.

相似文献/References:

[1]何卫东,董朝阳.高分子钝感发射药的低温感机理[J].火炸药学报,2007,30(1):9.
[2]张 昊,彭 松,庞爱民,等.NEPE推进剂老化过程中结构与力学性能的关系[J].火炸药学报,2007,30(1):13.
[3]路向辉,曹继平,史爱娟,等.表面处理芳纶纤维在丁羟橡胶中的应用[J].火炸药学报,2007,30(1):21.
[4]李春迎,王 宏,孙 美,等.遥感FTIR光谱技术在固体推进剂羽焰测试中的应用[J].火炸药学报,2007,30(1):28.
[5]杜美娜,罗运军.RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36.
[6]黄亨建,杨 攀,黄 辉,等.原位聚合包覆HMX的研究[J].火炸药学报,2007,30(1):40.
[7]王国栋,刘玉存.神经网络在炸药晶体密度预测中的应用[J].火炸药学报,2007,30(1):57.
[8]周诚,黄新萍,周彦水,等.FOX-7的晶体结构和热分解特性[J].火炸药学报,2007,30(1):60.
[9]张秋越,孟子晖,肖小兵,等.用分子烙印聚合物吸附溶液中的TNT[J].火炸药学报,2007,30(1):64.
[10]崔建兰,张 漪,曹端林.三羟甲基丙烷三硝酸酯的热分解性能[J].火炸药学报,2007,30(1):71.

备注/Memo

备注/Memo:
收稿日期:2019-03-18;改回日期:2019-04-04。
作者简介:王芮(1993-),女,硕士研究生,从事固体推进剂研究。E-mail:bitmxzlw@163.com
通讯作者:李晓萌(1970-),女,副教授,从事固体推进剂及高分子材料研究。E-mail:xm.lee@bit.edu.cn
更新日期/Last Update: 1900-01-01