|本期目录/Table of Contents|

[1]陈闯,杨丽,阮凌飞,等.展开式EFP战斗部复合破片场成型的数值模拟[J].火炸药学报,2019,42(3):295-302.[doi:10.14077/j.issn.1007-7812.2019.03.015]
 CHEN Chuang,YANG Li,RUAN Ling-fei,et al.Numerical Simulation on Composite Fragment Field Formation of Expansion EFP Warhead[J].,2019,42(3):295-302.[doi:10.14077/j.issn.1007-7812.2019.03.015]
点击复制

展开式EFP战斗部复合破片场成型的数值模拟()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第3期
页码:
295-302
栏目:
出版日期:
2019-06-30

文章信息/Info

Title:
Numerical Simulation on Composite Fragment Field Formation of Expansion EFP Warhead
作者:
陈闯 杨丽 阮凌飞 向召
1. 沈阳理工大学装备工程学院, 辽宁 沈阳 110159;
2. 重庆建设工业(集团)有限责任公司, 重庆 400054;
3. 北京理工大学爆炸科学与技术国家重点实验室, 北京 100081
Author(s):
CHEN Chuang YANG Li RUAN Ling-fei XIANG Zhao
1. School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China;
2. Chongqing Jianshe Industry(Group) Co., Ltd., Chongqing 400054, China;
3. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
关键词:
爆炸力学展开式EFP战斗部复合破片场爆炸成型弹丸预控破片
Keywords:
explosion mechanicsexpansion EFP warheadcomposite fragment fieldexplosive forming projectilepre-controlled fragment
分类号:
TJ55;O38
DOI:
10.14077/j.issn.1007-7812.2019.03.015
文献标志码:
-
摘要:
为实现战斗部毁伤威力的可控化,提出了一种外围采用刻槽壳体且可展开不同角度的EFP战斗部。基于ICEM CFD软件对展开式战斗部进行了O型网格划分,采用Autodyn软件对EFP和预控破片群相结合的复合破片场成型过程进行了数值模拟,获得了中心与外围装药量、外围装药起爆方式、展开角度对复合破片场成型特性的影响规律,利用X光试验验证了数值模拟方法的有效性。结果表明,随着中心装药半径的增大,EFP的速度和长径比逐渐增大,断裂现象愈加明显,而预控破片的飞散速度逐渐减小;外围装药顶部四点起爆方式形成的破片速度高于顶部二十点和内侧二十点起爆方式下的破片速度;闭合与展开时预控破片的最大速度分别出现在距起爆端约60%和33%处,且随着展开角度的增加,远离起爆端的预控破片速度逐渐减小,与闭合状态相比,展开75°状态下EFP侵彻深度减少了36%,而孔径增大了38%。选取中心装药半径20 mm、展开角度为45°~60°时,复合破片场的汇聚较明显且成型控制效果较佳。
Abstract:
To realize the controllability of warhead damage power, an EFP warhead with a peripheral grooved casing was proposed, which can expand different angles. Based on ICEM CFD software, the O-type meshing of the expansion warhead was carried out. Autodyn software was used to numerically simulate the forming process of composite fragment field combining EFP with pre-controlled fragment group. The influence law of the center and peripheral charge mass, peripheral charge initiation mode and expansion angle on the forming characteristics of the composite fragments field was obtained, and the effectiveness of the numerical simulation method was verified by X-ray test. The results show that with the increase of the center charge radius, the velocity and length-to-diameter ratio of EFP increase gradually, the fracture phenomenon becomes more and more obvious, while the scattering velocity of the pre-controlled fragment decreases gradually. The fragment velocity formed by the four points initiation mode at the top of peripheral charge is higher than the fragment velocity under twenty points initiation mode at the top and the twenty points initiation modes at inside. The maximum velocity of pre-controlled fragments at closure and expansion state occurs at about 60% and 33% from the detonation side, respectively, and with the increase of expansion angle, the pre-control fragment velocity away from the detonation side is gradually reduced. Compared with the closure state, the EFP penetration depth is reduced by 36% and the aperture is increased by 38% when the expansion angle is 75°. When the center charge radius is selected as 20 mm and the expansion angle is 45°-60°, the convergence of the composite fragments field is more obvious, and the molding control effect is better.

参考文献/References:

[1] James C S, Kevin O N, Robert A B. Powered low cost autonomous attack system:cooperative, autonomous, wide-area-search munitions with capability to serve as non-traditional ISR assets in a network-centric environment[C]//Proceeding of SPIE. Bellingham:WA, 2005:61-69.
[2] Haskins P. Controllable output warhead:EP, 2564150A1[P]. 2011.
[3] Colclough E. A novel tuneable effects explosive charge[C]//2012 Insensitive Munitions & Energetic Materials Technology Symposium. Las Vegas:NV, 2012:572-576.
[4] Mark R, William H T. Development of tuneable effects warheads[J]. Defence Technology, 2016, 12(3):255-262.
[5] Arnold W, Graswald M, Rottenkolber E.A novel technology for switchable modes warheads[C]//Proceedings of the 26th International Symposium on Ballistics. Miami, FL:IBC, 2011:305-312.
[6] 耿梓圃. 模式转换战斗部EFP/破片毁伤元成形特性[D]. 北京:北京理工大学, 2015. GENG Zi-pu. Research on EFP and fragment formation behavior of switchable modes warhead[D]. Beijing:Beijing Institute of Technology, 2015.
[7] 王利侠, 袁宝慧, 孙兴昀,等. 破甲/杀伤多用途战斗部结构设计及试验研究[J]. 火炸药学报, 2016, 39(2):75-79. WANG Li-xia, YUAN Bao-hui, SUN Xing-yun, et al. Structural design and experimental research on the anti-armor and anti-personnel multi-purpose warhead[J]. Chinese Journal of Explosive & Propellants(Huozhayao Xuebao), 2016, 39(2):75-79.
[8] 龚柏林, 王可慧, 初哲,等. EFP战斗部破片场复合技术研究[J]. 弹道学报, 2015,27(1):76-79. GONG Bai-lin, WANG Ke-hui, CHU Zhe, et al. Research on forming technology of composite fragments field of EFP[J]. Journal of Ballistics, 2015, 27(1):76-79.
[9] 毛益明, 郭涛, 李裕春, 等. 聚能装药问题的计算机模拟[M]. 北京:国防工业出版社, 2017.
[10] 陈闯, 王晓鸣, 李文彬,等. 串联聚能装药延迟时间与装药间距匹配关系研究[J]. 北京理工大学学报, 2014, 34(12):1217-1222. CHEN Chuang, WANG Xiao-ming, LI Wen-bin, et al. Research on matching relationship between tandem shaped charge delay initiation time and charge interval[J]. Transactions of Beijing Institute of Technology, 2014, 34(12):1217-1222.
[11] 朱建军, 李伟兵, 李文彬,等. 高应变率下金属柱壳动态变形及形成破片特性研究[J]. 兵工学报, 2017(10):1933-1941. ZHU Jian-jun, LI Wei-bing, LI Wen-bin, et al. Dynamic deformation and fracture fragmentation behavior of metal cylindrical shell at high strain rates[J]. Acta Armamentarii, 2017(10):1933-1941.
[12] Huang G Y, Li W, Feng S S. Axial distribution of fragment velocities from cylindrical casing under explosive loading[J]. International Journal of Impact Engineering, 2015, 76:20-27.

相似文献/References:

[1]李翔宇,卢芳云.三种类型战斗部破片飞散的数值模拟[J].火炸药学报,2007,30(1):44.
[2]邢恩峰,钱建平,赵国志.装药结构参数对轴向预制破片抛掷速度的影响[J].火炸药学报,2007,30(1):49.
[3]朱继红.隧道开挖爆破振动对临近建筑物影响的安全评价[J].火炸药学报,2007,30(1):78.
[4]董树南,王世英,朱晋生,等.含ACP改性双基推进剂的燃烧转爆轰实验研究[J].火炸药学报,2007,30(2):17.
[5]李志鹏,黄毅民,龙新平,等.大板实验中TATB基炸药爆轰波的传播特征[J].火炸药学报,2007,30(2):26.
[6]邓向阳,彭其先,赵剑衡,等.测量电爆炸箔驱动飞片速度的实验研究[J].火炸药学报,2007,30(2):45.
[7]梁琴琴,王 军,黄奕刚.新型呋咱(氧化呋咱)类炸药爆轰参数的理论计算[J].火炸药学报,2007,30(2):59.
[8]何洋扬,龙 源.B炸药爆轰波拐角传播的三维数值模拟[J].火炸药学报,2007,30(2):63.
[9]李成兵,裴明敬,沈兆武.聚能杆式弹丸侵彻水夹层复合靶相似律分析[J].火炸药学报,2006,29(6):1.
[10]肖川 宋浦 梁安定.炸药水中爆炸规律的研究进展[J].火炸药学报,2006,29(6):19.

备注/Memo

备注/Memo:
收稿日期:2018-9-3;改回日期:2018-10-15。
基金项目:辽宁省自然科学基金(No.201602650);重庆市博士后科研项目特别资助(No.XM2017115);沈阳理工大学博士后科研启动基金(No.1010148000805)
作者简介:陈闯(1987-),男,博士,副教授,从事弹药战斗部设计研究。E-mail:chenchuang517@126.com
更新日期/Last Update: 1900-01-01