|本期目录/Table of Contents|

[1]张哲,雷红兵,郝嘎子,等.TATB对AP的包覆降感[J].火炸药学报,2019,42(3):284-288.[doi:10.14077/j.issn.1007-7812.2019.03.013]
 ZHANG Zhe,LEI Hong-bing,HAO Ga-zi,et al.Desensitization of AP Coated with TATB[J].,2019,42(3):284-288.[doi:10.14077/j.issn.1007-7812.2019.03.013]
点击复制

TATB对AP的包覆降感()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第3期
页码:
284-288
栏目:
出版日期:
2019-06-30

文章信息/Info

Title:
Desensitization of AP Coated with TATB
作者:
张哲 雷红兵 郝嘎子 李强 赵刘明 黎博 李东楠 姜炜
1. 南京理工大学化工学院 国家特种超细粉体工程技术研究中心, 江苏 南京 210094;
2. 山西北方兴安化学工业有限公司, 山西 太原 030008
Author(s):
ZHANG Zhe LEI Hong-bing HAO Ga-zi LI Qiang ZHAO Liu-ming LI Bo LI Dong-nan JIANG Wei
1. National Special Superfine Powder Engineering Research Center of China, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2. Shanxi North Xing’an Chemical Industry Co. Ltd., Taiyuan 030008, China
关键词:
材料科学TATB高氯酸铵(AP)包覆降感机械复合法
Keywords:
material scienceTATBammonium perchlorate(AP)coatingdesensitizationmechanical compounding method
分类号:
TJ55;TQ564
DOI:
10.14077/j.issn.1007-7812.2019.03.013
文献标志码:
-
摘要:
为了降低AP的机械感度,采用机械复合法,用纳米TATB(粒径200 nm)对平均粒径分别为155 μm和10 μm的AP进行包覆,制备了TATB/AP壳-核型复合粒子;采用SEM对复合粒子的形貌进行表征,并对其吸湿性、摩擦感度和撞击感度进行测试,探究了TATB用量、AP颗粒平均粒径、干燥方式(50℃烘箱烘干、自然风干、真空抽滤)等对TATB/AP复合粒子机械感度的影响。结果表明,其他条件相同时,对于粒径155 μm的AP,TATB用量越高则复合粒子感度越低;TATB质量分数15%时,其对AP的包覆效果最好,可使AP颗粒的吸湿性降低80%,摩擦感度从100%降至0,撞击感度H50值从31.1 cm增至43.4 cm;纳米TATB对平均粒径10 μm的AP降感效果则不明显,甚至感度有所提高。3种干燥方法中真空抽滤干燥法得到的TATB/AP复合粒子撞击感度和摩擦感度分别为35.8 cm和0,感度最低;50℃烘干得到的样品撞击感度和摩擦感度分别为31.3 cm和8%,感度最高。
Abstract:
To decrease the mechnical sensitivity of AP, the TATB/AP shell-core composite particles were successfully prepared by mechanical compounding method using nano-TATB(particle size of 200 nm) to coat AP with average particle size of 155 μm and 10 μm. The morphology of the prepared composite particles was characterized by SEM,and the hygroscopicity, impact and friction sensitivities were also tested. The effects of TATB dosage, average particle size of AP, drying mode(drying at 50℃, naturally air dry, vacuum filtration) on the sensitivity of TATB/AP composite particles were investigated. The results show that for 155 μm AP, the higher the TATB dosage is, the lower the sensitivity of the composite particles is with other conditions unchanged. Nano-TATB has an optimum coating effect on the 155 μm AP when its mass fraction is 15%, which decreases the friction sensitivity from 100% to 0, raises H50 from 31.1 cm to 43.4 cm, and reduces the hygroscopicity by 80%. Nano-TATB has no obvious effect on the desensitization of AP with an average particle size of 10 μm, on the contrary, even makes the sensitivities increase. In addition, among the three drying methods, TATB/AP composite particles dried by vacuum filtration have the lowest impact and friction sensitivities of 35.8 cm and 0, while drying at 50℃ leads to the highest impact and friction sensitivities of 31.3 cm and 8%, respectively.

参考文献/References:

[1] 滕学峰,邓重清,胡铨,等.高氯酸铵(AP)基复合改性双基(AP/CMDB)推进剂燃速控制与降感研究[J].科学技术与工程,2017,17(6):178-182. TENG Xue-feng, DENG Chong-qing, HU Quan, et al. Research of burning rate controlling and sensitivity reducing of AP/CMDB propellant[J]. Science Technology and Engineering, 2017, 17(6):178-182.
[2] 肖会华. Al化AP/HTPB复合推进剂的颗粒分布及凝聚过程仿真[D]. 南京:南京理工大学, 2016. XIAO Hui-hua. The numerical simulation of particles distribution characteristics and agglomeration process of Al/AP/HTPB composite propellant[D]. Nanjing:Nanjing University of Science and Technology, 2016.
[3] 曹雄, 罗帅, 许丽娟, 等.TATB的热分解及其在[Emim] Ac/DMSO溶剂中的热爆炸特性[J]. 火炸药学报, 2016, 39(1):52-55. CAO Xiong, LUO Shuai, XU Li-juan. Thermal decomposition of TATB and its thermal explosion characteristics in[Emim]Ac/DMSO solvent[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2016, 39(1):52-55.
[4] 王彦群.纳米TATB杂质形成机理及高纯纳米TATB的制备[D]. 绵阳:西南科技大学, 2016. WANG Yan-qun. The formation mechanism of impurity and preparation of high purity nano-TATB[D]. Mianyang:Southwest University of Science and Technology, 2016.
[5] 侯聪花, 刘志强, 张园萍, 等. TATB/HMX共晶炸药的制备及性能研究[J]. 火炸药学报, 2017, 40(4):44-49. HOU Cong-hua, LIU Zhi-qiang, ZHANG Yuan-ping, et al. Study on preparation and properties of TATB/HMX cocrystal explosive[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2017, 40(4):44-49.
[6] Hang Fan, Yao Long, Ling Ding, et al. A theoretical study of elastic anisotropy and thermal conductivity for TATB under pressure[J]. Computational Materials Science, 2017, 131:321-332.
[7] 葛立波. TATB包覆HMX的工艺研究[D]. 南京:南京理工大学, 2015. GE Li-bo. Study on the process of HMX coated by TATB[D]. Nanjing:Nanjing University of Science and Technology, 2015.
[8] 徐容, 田野, 刘春. TATB对CL-20降感研究[J]. 含能材料, 2003, 11(4):219-221. XU Rong, TIAN Ye, LIU Chun. Study on the desensitization of CL-20 with TATB[J]. Chinese Journal of Energetic Materials, 2003, 11(4):219-221.
[9] 杨光成, 聂福德, 曾贵玉. 超细TATB-BTF核-壳型复合粒子的制备[J]. 火炸药学报, 2005, 28(2):72-74. YANG Guang-cheng, NIE Fu-de, ZENG Gui-yu. Preparation of fine TATB-BTF core-shell composite particles[J]. Chinese Journal of Explosives & Propellants (Huozhayao xuebao), 2005, 28(2):72-74.
[10] 王为民, 魏涛涛, 高红旭, 等. 纳米PbZrO3对AP、RDX、HMX热分解和NG/NC双基推进剂燃烧性能的影响[J]. 火炸药学报, 2017, 40(6):29-35. WANG Wei-min, WEI Tao-tao, GAO Hong-xu. Effects of nano PbZrO3 on the decompositions of AP, RDX, HMX and the combustion of (NG/NC) propellant[J]. Chinese Journal of Explosives & Propellants (Huozhayao xuebao), 2017, 40(6):29-35.
[11] 张领科, 赵威, 吴立志. AP/HTPB复合底排推进剂激光点燃烧特性[J]. 中国激光, 2013, 40(8):75-80. ZHANG Ling-ke, ZHAO Wei, WU Li-zhi. Ignition and combustion characteristics of AP/HTPB composite propellant by laser[J]. Chinese Journal of Lasers, 2013, 40(8):75-80.
[12] 杨洪涛, 李艳春, 成一. B/Fe2O3/NC复合物的制备及其对HTPB/AP推进剂性能的影响[J]. 火炸药学报, 2017, 40(2):88-93. YANG Hong-tao, LI Yan-chun, CHENG Yi. Preparation of B/Fe2O3/NC Composite and Its Effect on Properties of HTPB/AP Propellant[J]. Chinese Journal of Explosives & Propellants (Huozhayao xuebao), 2017, 40(2):88-93.
[13] LI Guo-ping, NI Zhi-cheng, LIU Ya-zhong, et al. Thermal performance and decomposition kinetics of RDX/AP/SiO2 intermolecular explosive[J] Journal of Thermal Analysis and Calorimetry, 2018, 132(3):1969-1978.
[14] Marothiya G, Vijay C, Ishitha K, et al. Effects on burn rates of pellets and propellants with catalyst-embedded AP[J]. Journal of Propulsion and Power, 2018, 34(4):969-974.
[15] 吴昊, 李兆乾, 裴重华. 二元包覆的AP吸湿性及热分解性能研究[J]. 固体火箭技术, 2014, 37(5):684-687. WU Hao, LI Zhao-qian, PEI Chong-hua. Binary coating of AP and research of its hygroscopicity and thermal decomposition behavior[J]. Journal of Solid Rocket Technology, 2014, 37(5):684-687.

相似文献/References:

[1]王 昕.美国不敏感混合炸药的发展现状[J].火炸药学报,2007,30(2):78.
[2]田广丰,康建成,胥会祥,等.小型推进剂管状装药药形尺寸数字化检测技术[J].火炸药学报,2006,29(4):61.
[3]王海鹰,李斌栋,吕春绪,等.硼酸酯表面活性剂的研究及应用[J].火炸药学报,2006,29(3):36.
[4]赵省向,戴致鑫,张成伟,等.DNTF及其低共熔物对PBX可压性的影响[J].火炸药学报,2006,29(3):39.
[5]王保国,张景林,陈亚芳,等.含超细高氯酸铵核-壳型复合材料的制备[J].火炸药学报,2006,29(3):54.
[6]周新利.无氯TATB的合成进展[J].火炸药学报,2006,29(1):26.
[7]杨光成,聂福德,曾贵玉.超细TATB-BTF核-壳型复合粒子的制备[J].火炸药学报,2005,28(2):72.
[8]曹阳,聂福德,李越生.TATB基PBX复合材料的微观结构分析[J].火炸药学报,2004,27(3):58.
[9]黄明,罗顺火,田野,等.一种大颗粒TATB的合成方法[J].火炸药学报,2003,26(4):44.
[10]谭武军,李 明,黄 辉.RDX和HMX晶体压制方程的对比研究[J].火炸药学报,2007,30(5):8.

备注/Memo

备注/Memo:
收稿日期:2018-7-13;改回日期:2018-11-6。
基金项目:国家自然科学基金(No.21805139);中国北方化学工业集团有限公司青年科技创新专项项目(No.QKCZ201713);中央高校基本科研业务费专项资金资助(No.30918011312;No.30919011404);基础产品创新科研火炸药专项项目
作者简介:张哲(1993-),男,硕士研究生,从事含能材料基础应用研究。E-mail:1094247298@qq.com
通讯作者:郝嘎子(1989-),男,博士,从
更新日期/Last Update: 1900-01-01