|本期目录/Table of Contents|

[1]王英红,刘长义,薛兆瑞,等.冲量法测试固体推进剂高压动态燃速及压强指数[J].火炸药学报,2019,42(3):278-283,288.[doi:10.14077/j.issn.1007-7812.2019.03.012]
 WANG Ying-hong,LIU Chang-yi,XUE Zhao-rui,et al.Measurement of High-pressure Dynamic Burning Rate and Pressure Exponent of Solid Propellants by Impulse Method[J].,2019,42(3):278-283,288.[doi:10.14077/j.issn.1007-7812.2019.03.012]
点击复制

冲量法测试固体推进剂高压动态燃速及压强指数()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第3期
页码:
278-283,288
栏目:
出版日期:
2019-06-30

文章信息/Info

Title:
Measurement of High-pressure Dynamic Burning Rate and Pressure Exponent of Solid Propellants by Impulse Method
作者:
王英红 刘长义 薛兆瑞 张昊 祝庆龙
1. 西北工业大学燃烧、热结构与内流场重点实验室, 陕西 西安 710072;
2. 西安长峰机电研究所, 陕西 西安 710065
Author(s):
WANG Ying-hong LIU Chang-yi XUE Zhao-rui ZHANG Hao ZHU Qing-long
1. Science and Technology on Combustion, Internal Flow and Thermo-structure Laboratory, Northwestern Polytechnical University, Xi’an 710072, China;
2. Xi’an Changfeng Institute of Mechanism and Electricity, Xi’an 710065, China
关键词:
物理化学固体推进剂高压动态燃速火箭发动机冲量法助推器法
Keywords:
physical chemistrysolid propellanthigh-pressure danamic burning raterocket motorimpulse methodbooster method
分类号:
TJ55;V435.12
DOI:
10.14077/j.issn.1007-7812.2019.03.012
文献标志码:
-
摘要:
为了解决固体推进剂在高压下燃速测试方法的不足,提出了一种固体推进剂高压动态燃速测试方法——冲量燃速测试法。该方法通过固体推进剂在火箭发动机中的增面燃烧,得到发动机工作过程中的递增F-t曲线和p-t曲线,根据单位时间产生的冲量与已燃烧推进剂质量的关系(冲量法),计算得到了发动机工作全过程中不同时刻对应压强下的燃速值。实验对比了在助推器中常规双铅-2(SQ-2)推进剂的燃速与冲量法测得的燃速,并通过测试某中能推进剂的燃速对冲量燃速测试法进行验证。结果表明,冲量法测得SQ-2推进剂在压强为10.62、7.89和7.63 MPa下的燃速分别为12.134、11.369和11.258 mm/s;而助推器法在相应压强下的燃速分别为12.056、11.104和10.91 mm/s,冲量法所得结果略高,最大误差约为3%;冲量法测得某中能复合推进剂的燃速特性为r=6.46p0.443p=8~23 MPa)、r=3.49p0.635p=23~47 MPa);实现了通过单次增压实验测试固体推进剂任意压强点的燃速。
Abstract:
In order to solve the deficiency of the testing method of burning rate of solid propellant under high pressures, a high-pressure dynamic burning rate test method for solid propellant, impulse burning rate test method, was proposed. In this method, the incremental F-t curve and p-t curve during the motor working process were obtained by increasing surface combustion of solid propellant in the rocket motor. According to the relationship between the impulse generated per unit time and the mass of burned propellant (impulse method), the burning rate values under the corresponding pressure at different time during the whole working process of the motor were calculated and obtained. The burning rate of the conventional propellant SQ-2 in booster was experimentally compared with that measured by impulse method, and the impulse burning rate test method was verified by testing the burning rate of a medium-energy propellant. The results show that the burning rates of propellant SQ-2 measured by impulse method are 12.134 mm/s at 10.62 MPa, 11.369 mm/s at 7.87 MPa and 11.258 mm/s at 7.63 MPa, while those measured by booster method are 12.056, 11.104 and 10.91 mm/s under the corresponding pressure. The results obtained by impulse method are slightly higher, with a maximum error of about 3%. The burning rate characteristics of a medium-energy composite propellant measured by impulse method are r=6.46p0.443(p=8-23 MPa), r=3.49p0.635(p=23-47 MPa). The measurement of burning rate at any pressure point of the solid propellant is realized by a single pressurization experiment.

参考文献/References:

[1] 王伯羲, 冯增国, 杨荣杰.火药燃烧理论[M]. 北京:北京理工大学出版社,1997.
[2] Gupta G, Jawale L, Mehilal, et al. Various methods for the determination of the burning rates of solid propellants-an overview[J]. Central European Journal of Energetic Materials, 2015, 12(3):593-620.
[3] 彭培根, 刘培谅, 张仁, 等. 固体推进剂性能计算原理[M]. 长沙:国防科技大学出版社,1987.
[4] 裴庆, 赵凤起, 罗阳, 等. 固体推进剂燃速测试技术研究进展[J]. 火炸药学报, 2015,38(3):9-14. PEI Qing, ZHAO Feng-qi, LUO Yang, at al. Research progress of burning rate measurement technology for solid propellants[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015,38(3):9-14.
[5] 张小平, 李葆萱, 汪越,等. NEPE推进剂的高压燃烧特性研究[J]. 推进技术, 2008, 29(4):508-512. ZHANG Xiao-ping, LI Bao-xuan, WANG Yue, et al. Study on high pressure combustion characteristics of NEPE propellant[J]. Journal of Propulsion Technology, 2008, 29(4):508-512.
[6] Zhao Na, Cao Y, Dai W, et al. Combustion experiment of the high bore pressure propellant under high pressure and optimization model of burning rate[C]//29th International Symposium on Ballistics. Beijing:International Bauistics Committee,2016, 1(2):661-675.
[7] JB770B-2005, 方法706.1.燃速-靶线法和.706.2.燃速-水下声发射法[S]. 北京:国防科学技术工业委员会,2005.
[8] GJB770B-2005, 方法705.2.比冲-推力台法[S]. 北京:国防科学技术工业委员会,2005.
[9] 胡松启, 李葆萱, 李逢春, 等. 密闭燃烧器法测高压下推进剂燃速研究[J]. 含能材料, 2005,13(3):189-191. HU Song-qi, LI Bao-xuan, LI Feng-chun, at al. Closed burning method for measuring burning rate of propellant under high pressure[J]. Chinese Journal of Energetic Material, 2005,13(3):189-191.
[10] 温刚, 堵平, 廖昕. 用密闭爆发器测定发射药实际燃速的原理和方法[J]. 火炸药学报, 2011,34(3):57-60. WEN Gang, DU Ping, LIAO Xin. Principles and methods of measuring the actual burning rate of propellants by closed bomb[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2011,34(3):57-60.
[11] 刘科祥, 赵露, 李博. 密闭自升压式固体推进剂动态燃速的测试方法[J]. 火炸药学报, 2014, 37(1):78-81. LIU Ke-xiang, ZHAO Lu, LI Bo. Test method for dynamic burning rate of closed self pressurized solid propellants[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2014, 37(1):78-81.

相似文献/References:

[1]何卫东,董朝阳.高分子钝感发射药的低温感机理[J].火炸药学报,2007,30(1):9.
[2]张 昊,彭 松,庞爱民,等.NEPE推进剂老化过程中结构与力学性能的关系[J].火炸药学报,2007,30(1):13.
[3]路向辉,曹继平,史爱娟,等.表面处理芳纶纤维在丁羟橡胶中的应用[J].火炸药学报,2007,30(1):21.
[4]张晓宏,莫红军.下一代战术导弹固体推进剂研究进展[J].火炸药学报,2007,30(1):24.
[5]李春迎,王 宏,孙 美,等.遥感FTIR光谱技术在固体推进剂羽焰测试中的应用[J].火炸药学报,2007,30(1):28.
[6]杜美娜,罗运军.RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36.
[7]王国栋,刘玉存.神经网络在炸药晶体密度预测中的应用[J].火炸药学报,2007,30(1):57.
[8]周诚,黄新萍,周彦水,等.FOX-7的晶体结构和热分解特性[J].火炸药学报,2007,30(1):60.
[9]张秋越,孟子晖,肖小兵,等.用分子烙印聚合物吸附溶液中的TNT[J].火炸药学报,2007,30(1):64.
[10]崔建兰,张 漪,曹端林.三羟甲基丙烷三硝酸酯的热分解性能[J].火炸药学报,2007,30(1):71.
[11]顾克壮,李晓东,杨荣杰.碳纳米管对高氯酸铵燃烧和热分解的催化作用[J].火炸药学报,2006,29(1):48.
[12]秦能,汪亮,谢波,等.低燃速低燃温双基推进剂的催化燃烧[J].火炸药学报,2005,28(2):6.
[13]刘子如,刘艳,赵凤起,等.固体推进剂的PDSC特征量与燃速的相关性[J].火炸药学报,2008,31(2):9.
[14]李吉祯,樊学忠,郑晓东,等.水杨酸金属衍生物对AP-CMDB推进剂燃烧性能和热行为的影响[J].火炸药学报,2008,31(2):43.
[15]吴婉娥,裴明敬,郭耳铃,等.硼颗粒在固冲环境中点火过程影响因素的数值模拟[J].火炸药学报,2008,31(3):79.
[16]李吉祯,樊学忠,刘小刚.AP和铝粉对AP-CMDB推进剂燃烧性能的影响[J].火炸药学报,2008,31(4):61.
[17]焦东明,杨月诚,强洪夫,等.键合剂对HTPB与Al/Al2O3之间 界面作用的分子模拟[J].火炸药学报,2009,32(4):60.
 JIAO Dong ming,YANG Yue cheng,QIANG Hong fu,et al.Molecular Simulation of Effect of Bonding Agents on Interface Interaction for HTPB and Al/Al2O3[J].,2009,32(3):60.
[18]袁书生,王玉峰,张继平,等.固体推进剂燃烧诱发热烟气运动的大涡模拟[J].火炸药学报,2011,34(1):80.
 YUAN Shu-sheng,WANGYu-feng,ZHANG Ji-ping,et al.Large Eddy Simulation of the Fire and Smoke Flow Induced by Solid Propellant Combustion in a Shipboard Compartment[J].,2011,34(3):80.
[19]刘芳莉,李吉祯,齐晓飞,等.含N,N-二硝基哌嗪无烟改性双基推进剂的燃烧性能[J].火炸药学报,2012,35(3):84.
 LIU Fang-li,LI Ji-zhen,QI Xiao-fei,et al.Combustion Characteristics of Smokeless CMDB Propellants Containing N,N′-dinitropiperazine[J].,2012,35(3):84.
[20]李欢,张路遥,潘仁明,等.用DSC研究3, 3-偕二氟氨甲基氧杂环丁烷与炸药和固体推进剂组分的化学相容性[J].火炸药学报,2012,35(4):37.
 LI Huan,ZHANG Lu-yao,PAN Ren-ming,et al.DSC Study of Chemical Compatibility of 3,3-Bis(Difluoroaminomethyl) Oxetane with Explosives and Solid Propellant Components[J].,2012,35(3):37.

备注/Memo

备注/Memo:
收稿日期:2018-7-9;改回日期:2018-11-5。
基金项目:燃烧热结构与内流场重点实验室基金(No.6142701190104)
作者简介:王英红(1972-),女,副教授,从事推进剂燃烧、工艺、性能预估及测试研究。E-mail:snow@nwpu.edu.cn
更新日期/Last Update: 1900-01-01