|本期目录/Table of Contents|

[1]任晓宁,赵凤起,肖立柏,等.微纳米RDX炸药的连续比热容、热力学性质和热分解动力学[J].火炸药学报,2019,42(3):257-261.[doi:10.14077/j.issn.1007-7812.2019.03.008]
 REN Xiao-ning,ZHAO Feng-qi,XIAO Li-bai,et al.Investigation on Continuous Specific Heat Capacities, Thermodynamic Properties and Thermal Decomposition Kinetics of Micro-sized and Nano-sized RDX[J].,2019,42(3):257-261.[doi:10.14077/j.issn.1007-7812.2019.03.008]
点击复制

微纳米RDX炸药的连续比热容、热力学性质和热分解动力学()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第3期
页码:
257-261
栏目:
出版日期:
2019-06-30

文章信息/Info

Title:
Investigation on Continuous Specific Heat Capacities, Thermodynamic Properties and Thermal Decomposition Kinetics of Micro-sized and Nano-sized RDX
作者:
任晓宁 赵凤起 肖立柏 高红旭
西安近代化学研究所燃烧与爆炸技术重点实验室, 陕西 西安 710065
Author(s):
REN Xiao-ning ZHAO Feng-qi XIAO Li-bai GAO Hong-xu
Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
关键词:
物理化学微纳米炸药μSC量热法比热容热力学性质热分析分解动力学
Keywords:
physical chemistrymicro-sized and nano-sized explosiveμSC calorimeter methodspecific heat capacitythermodynamic propertythermal analysisdecomposition kinetics
分类号:
TJ55;O642
DOI:
10.14077/j.issn.1007-7812.2019.03.008
文献标志码:
-
摘要:
为了分析不同粒径RDX的热性能,在温度288~353 K下,采用μSC量热法测试了粒径分别为1 μm、500 nm、100 nm的微纳米RDX炸药的连续比热容,由比热容随温度的变化曲线拟合得到了温度二次方的Cp表达式,并依据热力学定律计算获得了不同粒径RDX的热力学参数;采用DSC分别测试了3种粒径RDX的热分解性能,获得热分解规律曲线,并用Kissinger法计算了不同粒径RDX的分解动力学参数。结果表明,μSC量热法测试连续比热容简便并且数据准确。微纳米RDX的比热容、熵和焓均随着温度的升高而增加,但吉布斯自由能降低;焓和吉布斯自由能随粒径的下降而下降,但熵随着粒径的下降而增加;与微米RDX相比,两种纳米RDX的熵和吉布斯自由能随粒径的变化不大,这两种热力学函数显示了纳米与微米材料之间的不同;纳米与非纳米RDX熔融态分解的动力学参数虽有不同,但它们都服从同一"动力学补偿效应"。
Abstract:
In order to analyze the thermal properties of RDX with different particles sizes, the continuous specific heat capacities of micro-sized and nano-sized RDX with particle size of 1 μm, 500 nm and 100 nm were determined by the μSC calorimetry method at the temperature of 288-353 K. The specific heat capacity curves were fitted to achieve the equation of Cp, and the thermodynamic properties of RDX with different particle sizes were calculated based on the thermodynamic law. The thermal decomposition behaviors of RDX with different particle sizes were investigated by DSC and their decomposition kinetic paramelers were calculated according to the Kissinger’s method. The results show that the μSC calorimetry method is favorable for the measurement of specific heat capacity with simplicity and high accuracy. For the micro-sized RDX particles, the specific heat capacity, entropy and enthalpy increase with the increase in temperature, whereas the Gibbs free energy shows an opposite behavior. Moreover, the enthalpy and Gibbs free energy of RDX reduce with the decrease in particle sizes, but the entropy increases with the decrease in sizes. Compared with the micro-sized RDX, the changes occurred to entropy and Gibbs free energy of nano-sized RDX are relatively small, which is believed to originate from their smaller particle size. Although kinetic parameters of the melting and decomposition processes of micro-sized and nano-sized RDX are different, they all obey the "dynamic compensation effect" rule.

参考文献/References:

[1] 任晓雪,国外纳米含能材料的研究现状与展望[C]//第十四届中国国际纳米科技研讨会. 北京:中国微米纳米技术学会,2015. REN Xiao-xue, Analysis of the development of foreign energetic nanomaterial[C]//14th China Internatinal Conference on NanoScience and Technology. Beijing:Chinese Society of Micro-nano Technology,2015.
[2] Subramanian, Shanthi, Tiegs, et al. Nanoporous silicon based energetic materials, ADA506071[R]. Springfield:NTIS,2008.
[3] Risse B, et al.Synthesis and desensitization of nano-β-HMX[J]. Propellants, Explosives,Pyrotechnics,2014,39:397-401.
[4] Rossi C. Two decades of research on nano-energetic materials[J]. Propellants, Explosives,Pyrotechnics,2014, 39:323-327.
[5] Qiu H W, Stepanov V, Di Stasio A R,et al.RDX-based nanocomposite microparticles for significantly reduced shock sensitivity[J]. Journal of Hazardous Materials, 2011,185:489.
[6] Siviour C R, Gifford M J, Walley S M, et al. Particle size effect on the mechanical properties of a polymer bonded explosive[J]. Journal of Materials Science, 2004,39:1255.
[7] 李兆娜,马海霞,宋纪蓉,等.NTO的比热容、热力学性质及绝热至爆时间[J]. 火炸药学报,2008,31(3):25-28. LI Zhao-na, MA Hai-xia, SONG Ji-rong,et al. Specific heat capacity, thermodynamic properties and adiabatic time-to-explosion of NTO[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2008,31(3):25-28.
[8] 胡哲,江劲勇,路桂娥,等.改黑碳推进剂比热容和热导率与温度之间的关系[J]. 火炸药学报,2015,38(6):95-98. HU Zhe, JIANG Jin-yong, LU Gui-e, et al, Temperature dependence of specific heat capacity and thermal conductivity of GHT propellant[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(6):95-98.
[9] 刘子如,含能材料热分析[M].北京:国防工业出版社,2008
[10] Cheng S Z D. Handbook of Thermal Analysis and Calorimetry[M]. Amsterdam:Elsevier Science,2002.
[11] Wunderlich B. Thermal Aalysis.[M]. Boston:Academic Press, 1990.
[12] 徐抗震,常春藤,宋纪蓉,等.RDX的比热容、热力学性质及绝热至爆时间[J]. 火炸药学报,2008,31(4):35-38. XU Kang-zhen, CHANG Chun-teng, SONG Ji-rong, et al. Specific heat capacity, thermodynamic properties and adiabatic time-to-explosion of RDX[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2008, 31(4):35-38.
[13] Brill T B, Gongwer P E,Williams G K. Thermal decomposition of energetic materials 66. Kinetic compensation effects in HMX, RDX and NTO[J]. J Phys Chem, 1994,98:12242-12247.

相似文献/References:

[1]何卫东,董朝阳.高分子钝感发射药的低温感机理[J].火炸药学报,2007,30(1):9.
[2]张 昊,彭 松,庞爱民,等.NEPE推进剂老化过程中结构与力学性能的关系[J].火炸药学报,2007,30(1):13.
[3]路向辉,曹继平,史爱娟,等.表面处理芳纶纤维在丁羟橡胶中的应用[J].火炸药学报,2007,30(1):21.
[4]李春迎,王 宏,孙 美,等.遥感FTIR光谱技术在固体推进剂羽焰测试中的应用[J].火炸药学报,2007,30(1):28.
[5]杜美娜,罗运军.RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36.
[6]王国栋,刘玉存.神经网络在炸药晶体密度预测中的应用[J].火炸药学报,2007,30(1):57.
[7]周诚,黄新萍,周彦水,等.FOX-7的晶体结构和热分解特性[J].火炸药学报,2007,30(1):60.
[8]张秋越,孟子晖,肖小兵,等.用分子烙印聚合物吸附溶液中的TNT[J].火炸药学报,2007,30(1):64.
[9]崔建兰,张 漪,曹端林.三羟甲基丙烷三硝酸酯的热分解性能[J].火炸药学报,2007,30(1):71.
[10]李进华,孙兆懿.四氧化二氮胶体饱和蒸气压的测试及分析[J].火炸药学报,2007,30(1):74.

备注/Memo

备注/Memo:
收稿日期:2018-11-24;改回日期:2019-1-22。
基金项目:国家自然科学基金(No.21473131)
作者简介:任晓宁(1981-),女,副研究员,从事含能材料热分析研究。E-mail:xueyexy@163.com
更新日期/Last Update: 1900-01-01