|本期目录/Table of Contents|

[1]陈艳,马宏昊,沈兆武,等.添加RDX粉末的乳化炸药的爆炸特性[J].火炸药学报,2019,42(3):242-246.[doi:10.14077/j.issn.1007-7812.2019.03.005]
 CHEN Yan,MA Hong-hao,SHEN Zhao-wu,et al.Explosion Characteristics of Emulsion Explosive Mixed with RDX Powder[J].,2019,42(3):242-246.[doi:10.14077/j.issn.1007-7812.2019.03.005]
点击复制

添加RDX粉末的乳化炸药的爆炸特性()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第3期
页码:
242-246
栏目:
出版日期:
2019-06-30

文章信息/Info

Title:
Explosion Characteristics of Emulsion Explosive Mixed with RDX Powder
作者:
陈艳 马宏昊 沈兆武 杨明 田启超
1. 中国科学院材料力学行为和设计重点实验室, 中国科学技术大学, 安徽 合肥 230026;
2. 中国科学技术大学火灾科学国家重点实验室, 安徽 合肥 230026
Author(s):
CHEN Yan MA Hong-hao SHEN Zhao-wu YANG Ming TIAN Qi-chao
1. CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230026, China;
2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
关键词:
爆炸力学乳化炸药RDX爆炸焊接金属箔爆炸特性
Keywords:
explosion mechanicsemulsion explosiveRDXexplosive weldingfoilexplosion characteristics
分类号:
TJ55;O389
DOI:
10.14077/j.issn.1007-7812.2019.03.005
文献标志码:
-
摘要:
为了满足金属箔爆炸焊接对低临界厚度炸药的需求,将RDX粉末引入乳化炸药得到混合炸药,通过水下爆炸实验、爆速测量实验以及猛度测试实验,研究了RDX含量对混合炸药爆轰性能的影响。结果表明,随着RDX含量的增加,混合炸药的临界厚度显著降低,RDX质量分数为0、5%、10%、15%和20%时,临界厚度分别为(5.9±0.1)、(4.8±0.1)、(4.1±0.1)、(3.7±0.1)、(3.3±0.1)mm;不同RDX含量时的临界爆速基本保持不变,约为2 500 m/s。水下爆炸的所有能量输出参数(冲击波超压峰值、比冲击波能、比气泡能、总能量)均随RDX含量的增加而增加;与未添加RDX的乳化炸药相比,添加质量分数5%、10%、15%和20%的RDX时,混合炸药距离爆炸中心1.0 m处冲击波超压峰值分别增加3.8%、7.4%、12.7%和17.3%,总能量分别增加7.2%、16.8%、22.2%和26.4%;混合炸药的猛度也随着RDX含量的增加而增加,RDX质量分数为0、5%、10%、15%和20%时,猛度分别为0.25、0.31、0.35、0.37和0.42,当RDX含量较低时,猛度增加趋势更为显著。因此,该混合炸药可用于金属箔的爆炸焊接。
Abstract:
In order to satisfy the demand of reducing critical thickness for explosives applied to metal foil explosion welding, the mixed explosives were obtained by introducing RDX powder into emulsion explosives. The effects of RDX content on the detonation performance of mixed explosives were studied by underwater explosion experiment, detonation velocity test and explosive brisance test. The results show that the critical thickness of mixed explosive decreases significantly with the increase of RDX content. For mixed explosives with RDX mass fraction of 0, 5%, 10%, 15% and 20%, the value of critical thickness was (5.9±0.1), (4.8±0.1), (4.1±0.1), (3.7±0.1) and (3.3±0.1)mm, respectively, while the critical detonation velocity basically remains unchanged at a value of about 2 500 m/s. All energy output parameters of underwater explosion such as shock overpressure peak, specific shock energy, specific bubble energy, and total energy increase with the increase of RDX content. After adding 5%, 10%, 15% and 20% RDX, the shock overpressure peak at 1.0 m from the explosion center increase by 3.8%, 7.4%, 12.7% and 17.3%, respectively, and the total energy increase by 7.2%, 16.8%, 22.2% and 26.4% simultaneously. The brisance of the mixed explosive also increases with the RDX content, and it is more significant within a lower RDX content range. When the mass fraction of RDX are 0, 5%, 10%, 15% and 20%, the brisance of the mixed explosives are 0.25, 0.31, 0.35, 0.37 and 0.42, respectively. Therefore, the mixed explosive is available for explosive welding of metal foil.

参考文献/References:

[1] Findik F. Recent developments in explosive welding[J]. Materials & Design, 2011, 32(3):1081-1093.
[2] 郑远谋. 爆炸焊接和爆炸复合材料的原理及应用[M]. 长沙:中南大学出版社, 2007.
[3] Wronka B. Testing of explosive welding and welded joints. Wavy character of the process and joint quality[J]. International Journal of Impact Engineering, 2011,38(5):309-313.
[4] Blazynski T Z. Implosively manufactured composite multilayered foil cylinders and tubular transition joints[J]. Materialwissenschaft und Werkstofftechnik, 1989, 20(8):262-271.
[5] Zhou Q, Feng J R, Chen P W. Numerical and experimental studies on the explosive welding of tungsten foil to copper[J]. Materials, 2017, 10(9):984.
[6] Hokamoto K, Nakata K, Mori A, et al. Dissimilar material welding of rapidly solidified foil and stainless steel plate using underwater explosive welding technique[J]. Journal of Alloys and Compounds, 2009, 472(1/2):507-511.
[7] Sun W, Li X J, Yan H H, et al. Effect of initial hardness on interfacial features in underwater explosive welding of tool steel SKS3[J]. Journal of Materials Engineering and Performance, 2014, 23(2):421-428.
[8] Fan M Y, Yu W W, Wang W T, et al. Microstructure and mechanical properties of thin-multilayer Ti/Al laminates prepared by one-step explosive bonding[J]. Journal of Materials Engineering and Performance, 2017, 26(1):277-284.
[9] Morizono Y, Yamaguchi T, Tsurekawa S. Aluminizing of high-carbon steel by explosive welding and subsequent heat treatment[J]. ISIJ International, 2015, 55(1):272-277.
[10] Andreevskikh L A, Dendenkov Y P, Drennov O B, et al. Explosive mixture for explosive welding of thin foils[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(1):48-50.
[11] Andreevskikh L A, Dendenkov Y P, Drennov O B, et al. Explosive mixtures for explosive welding of thin foils:part 2. RDX-baking soda mixtures[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5):430-432.
[12] 周国安, 马宏昊, 沈兆武, 等. 以黏土颗粒为惰性剂的低爆速乳化炸药爆炸性能及爆轰机理[J]. 火炸药学报, 2018, 41(3):289-293,302. ZHOU Guo-an, MA Hong-hao, SHEN Zhao-wu,et al. Detonation properties and mechanism of low detonation velocity emulsion explosives with clay particles as the inert agents[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2018, 41(3):289-293,302.
[13] Sil’vestrov V V, Plastinin A V. Investigation of low detonation velocity emulsion explosives[J]. Combustion, Explosion and Shock Waves, 2009, 45(5):618-626.
[14] Cheng Y F, Meng X R, Feng C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6):585-591.
[15] Cheng Y F, Ma H H, Shen Z W. Detonation characteristics of emulsion explosives sensitized by MgH2[J]. Combustion, Explosion and Shock Waves, 2013, 49(5):614-619.
[16] Araos M, Onederra I. Detonation characteristics of a NOx-free mining explosive based on sensitised mixtures of low concentration hydrogen peroxide and fuel[J]. Central European Journal of Energetic Materials, 2017, 14(4):759-774.
[17] Wood W W, Kirkwood J G. Diameter effect in condensed explosives. The relation between velocity and radius of curvature of the detonation wave[J]. The Journal of Chemical Physics, 1954, 22(11):1920-1924.
[18] 张宝平. 爆轰物理学[M]. 北京:兵器工业出版社, 2001.
[19] 林谋金, 马宏昊, 沈兆武, 等. RDX基铝纤维炸药水下爆炸的能量分析[J]. 火炸药学报, 2013, 36(1):17-20,25. LIN Mou-jin, MA Hong-hao, SHEN Zhao-wu, et al. Analysis on explosion energy of aluminum fiber explosive on underwater detonation[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2013, 36(1):17-20,25.
[20] Cheng Y F, Ma H H, Liu R, et al. Explosion power and pressure desensitization resisting property of emulsion explosives sensitized by MgH2[J]. Journal of Energetic Materials, 2014, 32(3):207-218.

相似文献/References:

[1]李翔宇,卢芳云.三种类型战斗部破片飞散的数值模拟[J].火炸药学报,2007,30(1):44.
[2]邢恩峰,钱建平,赵国志.装药结构参数对轴向预制破片抛掷速度的影响[J].火炸药学报,2007,30(1):49.
[3]朱继红.隧道开挖爆破振动对临近建筑物影响的安全评价[J].火炸药学报,2007,30(1):78.
[4]董树南,王世英,朱晋生,等.含ACP改性双基推进剂的燃烧转爆轰实验研究[J].火炸药学报,2007,30(2):17.
[5]李志鹏,黄毅民,龙新平,等.大板实验中TATB基炸药爆轰波的传播特征[J].火炸药学报,2007,30(2):26.
[6]邓向阳,彭其先,赵剑衡,等.测量电爆炸箔驱动飞片速度的实验研究[J].火炸药学报,2007,30(2):45.
[7]梁琴琴,王 军,黄奕刚.新型呋咱(氧化呋咱)类炸药爆轰参数的理论计算[J].火炸药学报,2007,30(2):59.
[8]何洋扬,龙 源.B炸药爆轰波拐角传播的三维数值模拟[J].火炸药学报,2007,30(2):63.
[9]李成兵,裴明敬,沈兆武.聚能杆式弹丸侵彻水夹层复合靶相似律分析[J].火炸药学报,2006,29(6):1.
[10]叶志文,吕春绪.高能乳化炸药的制备及性质[J].火炸药学报,2006,29(6):6.
[11]王尹军,汪旭光,宋锦泉.敏化方式对乳化炸药压力减敏作用的影响[J].火炸药学报,2005,28(3):41.
[12]吴红波,颜事龙,刘 锋.乳化基质抗动压性能的实验研究[J].火炸药学报,2008,31(5):9.

备注/Memo

备注/Memo:
收稿日期:2018-10-30;改回日期:2019-1-4。
基金项目:国家自然科学基金(No.51874267;No.51674229)
作者简介:陈艳(1993-),女,硕士研究生,从事低临界厚度炸药及其应用研究。E-mail:cysmile@mail.ustc.edu.cn
通讯作者:马宏昊(1980-),男,副教授,从事爆炸与工业安全工作。E-mail:hhma@ustc.edu.cn
更新日期/Last Update: 1900-01-01