|本期目录/Table of Contents|

[1]王晶禹,李旭阳,武碧栋,等.3,3’-二氨基-4,4’-氧化偶氮呋咱(DAAF)的合成、细化和热分析[J].火炸药学报,2019,42(3):232-235,241.[doi:10.14077/j.issn.1007-7812.2019.03.003]
 WANG Jing-yu,LI Xu-yang,WU Bi-dong,et al.Synthesis, Refinement and Thermal Analysis of 3,3’-Diamino-4,4’-azoxyfurazan (DAAF)[J].,2019,42(3):232-235,241.[doi:10.14077/j.issn.1007-7812.2019.03.003]
点击复制

3,3’-二氨基-4,4’-氧化偶氮呋咱(DAAF)的合成、细化和热分析()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第3期
页码:
232-235,241
栏目:
出版日期:
2019-06-30

文章信息/Info

Title:
Synthesis, Refinement and Thermal Analysis of 3,3’-Diamino-4,4’-azoxyfurazan (DAAF)
作者:
王晶禹 李旭阳 武碧栋 杨玥 刘淑杰 安崇伟
1. 中北大学环境与安全工程学院, 山西 太原 030051;
2. 山西省超细粉体工程技术研究中心, 山西 太原 030051
Author(s):
WANG Jing-yu LI Xu-yang WU Bi-dong YANG Yue LIU Shu-jie AN Chong-wei
1. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China;
2. Shanxi Engineering Technology Research Center for Ultrafine Powder, Taiyuan 030051, China
关键词:
有机化学33’-二氨基-44’-氧化偶氮呋咱(DAAF)DAF重结晶呋咱类化合物
Keywords:
organic chemistry33’-diamino-44’-azoxyfurazan (DAAF)DAFrecrystallizationfurazan compounds
分类号:
TJ55;O62
DOI:
10.14077/j.issn.1007-7812.2019.03.003
文献标志码:
-
摘要:
为获得性能良好的3,3’-二氨基-4,4’-氧化偶氮呋咱(DAAF),以乙二醛和盐酸羟胺为原料制备了DAAF,并采用低温滴加重结晶细化方法得到了亚微米级DAAF;采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和差示扫描量热仪(DSC)表征样品的形貌、晶型和热分解性能,并采用Kissinger法、Ozawa法和Starink法计算其表观活化能和热爆炸临界温度。结果表明,当溶剂二甲基亚砜为常温(20℃)、非溶剂水为0℃时,重结晶细化能获得粒径约500 nm的类球形DAAF;细化DAAF的活化能为160.3 kJ/mol,热爆炸临界温度为248.6℃,具有较好的热安定性。
Abstract:
To obtain the 3,3’-diamino-4,4’-azoxyfurazan (DAAF) with good performance, DAAF was prepared with glyoxal and hydroxylamine hydrochloride as raw materials, and the submicron-scale DAAF was obtained by low-temperature dropping recrystallization refinement method. The morphology, crystal forms and thermal decomposition properties of the DAAF samples were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and differential scanning calorimetry (DSC), respectively. The Kissinger’s method, Ozawa’s method and Starink’s method were used to calculate the apparent activation energy and critical temperature of thermal explosion. The results show that the spherical-like DAAF with a particle size of about 500 nm can be obtained through the recrystallization refinement when the dimethyl sulfoxide solvent is at room temperature (20℃) and non-solvent water at 0℃. The apparent activation energy and critical temperature of the thermal explosion of the refined DAAF were 160.3 kJ/mol and 248.6℃, indicating that it has better thermal stability.

参考文献/References:

[1] 郭向利, 韩勇, 曹威, 等. TATB基和CL-20基PBX炸药爆轰波拐角性能的实验研究[J]. 火炸药学报, 2015, 38(5):41-45. GUO Xiang-li, HAN Yong, CAO Wei, et al. Corner performance of detonation waves in TATB-based and CL-20-based PBX explosive[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(5):41-45.
[2] 王保国, 张景林, 陈亚芳. HMX/TATB基高聚物粘结传爆药的研究[J]. 含能材料, 2007, 15(1):9-11. WANG Bao-guo, ZHANG Jing-lin, CHEN Ya-fang. Theoretical analysis on friction sensitivity of high explosive[J]. Chinese Journal of Energetic Materials, 2007, 15(1):9-11.
[3] 吴永炎. 超细TATB的制备及TATB基传爆药配方设计初探[D]. 太原:中北大学, 2013. WU Yong-yan. Preparation of ultrafine TATB and formula design study of booster explosive based TATB[D]. Taiyuan:North University of China, 2013.
[4] 于卫龙. 含TATB传爆药制备及工艺优化[D]. 太原:中北大学, 2016. YU Wei-long. Preparation and process optimization of TATB booster explosive[D]. Taiyuan:North University of China, 2016.
[5] Sheremeteeev A B. Chemistry of furazans fused to fived-membered rings[J]. Heterocyclic Chemistry, 1995, 26(2):371-384.
[6] Francois E G, Chavez D E, Sandstrom M M. The development of a new synthesis process for 3,3-diamino-4,4’azoxyfurazan (DAAF)[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(6):529-534.
[7] 王小旭, 张勇, 黄明. 高纯3,3’-二氨基-4,4’-氧化偶氮呋咱(DAOAF)的合成工艺[J]. 含能材料, 2017, 25(10):838-842. WANG Xiao-xu, ZHANG Yong, HUANG Ming. Synthesis of high-purity 3,3’-diamino-4,4’-azoxyfurazan(DAOAF)[J]. Chinese Journal of Energetic Materials, 2017, 25(10):838-842.
[8] Tappan B C, Bowden P R, Lichthardt J P, et al. Evaluation of the detonation performance of insensitive explosive formulations based on 3,3’-4,4’-Azoxyfurazan (DAAF) and 3-nitro-1,2,4-triazol-5-one (NTO)[J]. Journal of Energetic Materials, 2017, 36(2):1-10.
[9] Gunasekaran A, Jayachandran T, Boyer J H, et al. A convenient synthesis of diaminoglyoxime and diaminofurazan:useful precursors for the synthesis of high density energetic msterials[J]. Journal of Heterocyclic Chemistry, 1995, 32(1):1405.
[10] Hiskey M A, Chavez D E, Bishop R L, et a1. Use of 3,3’-diamino-4,4’-azoxyfurazan and 3,3’-diamino-4,4’-azofurazan as insensitive high explosive materials:US, 6358339[P]. 2002.
[11] 王元元.