|本期目录/Table of Contents|

[1]陈鹏,屈可朋,陈荣,等.落锤加载下反应材料的反应性能[J].火炸药学报,2019,42(2):197-201,206.[doi:10.14077/j.issn.1007-7812.2019.02.016]
 CHEN Peng,QU Ke-peng,CHEN Rong,et al.Reactive Properties of Reactive Material under the Load of Drop-weight[J].,2019,42(2):197-201,206.[doi:10.14077/j.issn.1007-7812.2019.02.016]
点击复制

落锤加载下反应材料的反应性能()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第2期
页码:
197-201,206
栏目:
出版日期:
2019-04-30

文章信息/Info

Title:
Reactive Properties of Reactive Material under the Load of Drop-weight
作者:
陈鹏 屈可朋 陈荣 袁宝慧
1. 西安近代化学研究所, 陕西 西安 710065;
2. 国防科技大学, 湖南 长沙 410073
Author(s):
CHEN Peng QU Ke-peng CHEN Rong YUAN Bao-hui
1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
2. National University of Defense Technology, Changsha 410073, China
关键词:
固体力学反应材料落锤加载反应性能冲击引发反应材料
Keywords:
solid mechanicsreactive materialload of drop-weightreactive propertiesimpact initialed reactive material
分类号:
TJ55;0389
DOI:
10.14077/j.issn.1007-7812.2019.02.016
文献标志码:
-
摘要:
为了研究反应材料在落锤加载下的反应性能,利用10 kg落锤直接加载反应材料,获得了材料在落锤不同落高加载下的应力-时间曲线;将应力-时间曲线和高速摄影拍摄结果进行了对比,并分析计算了单位质量材料在发生反应时的吸收能量;基于材料的Johnson-Cook本构模型,使用有限元计算软件LS-DYNA计算了加载过程中的材料力学性能变化。结果表明,在无约束情况下使用10 kg落锤加载,随着落锤下落高度的增加,应力随时间的变化越快,材料在1 000 μs时发生反应,对应的临界应力为281 MPa,单位质量反应材料在发生反应时吸收的能量为40.9 J/g,数值计算结果与实验结果能够吻合,进一步验证了材料Johnson-Cook本构模型的合理性。
Abstract:
To investigate the reactive properties of reactive material under the load of drop-weight, the stress-time curves of material under different drop height loading of drop-weight were obtained by directly loading reactive material with a 10 kg drop-weight. The stress-time curves were compared with the results of high-speed photographs, and the absorption energy of the unit mass of material during the reaction was analyzed and calculated. Based on the Johnson-Cook constitutive model of materials, the changes of mechanical properties during loading were calculated by using finite element calculation software LS-DYNA. The results show that under unconstrained loading with 10 kg drop-weight, the stress changes rapidly with time with increasing the drop-weight height, the material reacts at 1 000 μs, the corresponding critical stress is 218 MPa, and the energy absorbed by the unit mass of material during the reaction is 40.9 J/g. The simulation results are in agreement with the experimental ones and further verify the rationality of the Johnson-Cook’s constitutive model of materials.

参考文献/References:

[1] Hugh E. Reactive fragment:US,3961576[P].1976.
[2] 肖艳文,徐峰悦,郑元枫,等.活性材料弹丸碰撞邮箱引燃效应实验研究[J].北京理工大学学报,2017,37(6):557-561. XIAO Yan-wen, XU Feng-yue, ZHENG Yuan-feng, et al. Experimental study on ignition effects of fuer-filed tank impacted by reactive material projectile[J]. Transactions of Beijing Institute of Technology, 2017, 37(6):557-561.
[3] 何源,何勇,潘绪超,等.含能破片冲击引爆屏蔽炸药研究[J].南京理工大学学报,2011,35(2):187-193. HE Yuan, HE Yong, PAN Xu-chao, et al. Initiation of shielded high explosive impacted by energetic fragment[J]. Journal of Nanjing University of Science and Technology, 2011,35(2):187-193.
[4] 王海福,郑元枫,余庆波,等. 活性破片引爆屏蔽装药机理研究[J]. 北京理工大学学报,2012,32(8):786-789. WANG Hai-fu, ZHENG Yuan-feng, YU Qing-bo, et al. Study on initiation mechanism of reactive fragment to covered explosive[J]. Transactions of Beijing Institute of Technology,2012,32(8):786-789.
[5] 阳世清,徐松林,张彤,等.PTFE/Al反应材料制备工艺及性能[J].国防科技大学学报,2008,30(6):39-44. YANG Shi-qing, XU Song-lin, ZHANG Tong, et al. Preparation and performance of PTFE/Al reactive materials[J]. Journal of National University of Defense Technology, 2008,30(6):39-44.
[6] Casem D T. Mechanical response of an Al-PTFE composite to uniaxial compression over a range of strain rates and temperatures[R]. Maryland:Army Research Laboratory, 2008.
[7] 赵鹏铎,卢芳云,李俊玲,等.活性材料PTFE/Al动态压缩性能[J].含能材料,2009,17(4):459-462. ZHAO Peng-duo, LU Fang-yun, LI Jun-ling, et al. The dynamic compressive properties of PTFE/Al reactive materials[J]. Chinese Journal of Energetic Materials, 2009, 17(4):459-462.
[8] Cai J, Walley S, Hunt R, et al. High-strain high-strain-rate flow and failure in PTFE/Al/W granular composites[J]. Materials Science and Engineering A, 2008, 472(1):308-315.
[9] GE Chao, Wubuliaisan Maimaitituersun, DONG Yong-xiang. A study on the mechanical properties and impact-induced initiation characteristics of brittle PTFE/Al/W reactive materials[J]. Materials,2017,10(5):1-15.
[10] Addiss J, Cai J, Walley S, et al. High strain and strain-rate behaviour of PTFE/Al/W mixtures[J]. Shock Compression of Condensed Matter, 2007:773-776.
[11] 卢芳云,陈荣,林玉亮,等.霍普金森杆实验技术[M]. 北京:科学出版社, 2013:31-32.
[12] 李亮亮,沈飞,屈可朋,等. 炸药装药在不同应变率响应条件下的安全性研究进展[J].火炸药学报,2016,39(1):14-22. LI Liang-liang, SHEN Fei, QU Ke-peng, et al. Progress of study on tbe safety of explosive cbarge under different strain-rate conditions[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2016,39(1):14-22.
[13] Xu F, Geng B, Zhang X, et al. Experimental study on behind-plate overpressure effect by reactive material projectile[J]. Propellants, Explosives, Pyrotechnics,2017,42:192-197.
[14] Xu F Y, Zheng Y F. Damage effects of aluminum plate by reactive material projectile impact[J]. Impact Engineering,2017,104:38-44.
[15] Richard G A.Energy release characteristics of impact-initiated energy materials[J].Materials Research Society,2005,896:123-132.
[16] Wang H F, Zheng Y F, Yu Q B, et al. Impact-induced initiation and energy release behavior of reactive materials[J]. Journal of Applied Physics, 2011, 110:074904.
[17] 陈进,袁宝慧,梁争峰,等.活性材料能量释放特性实验评估方法[J].火炸药学报,2015,38(3):49-53. CHEN Jin, YUAN Bao-hui, LIANG Zheng-feng, et al. An experimental evaluation method of energy release characteristics of reactive materials[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015,38(3):49-53.
[18] 陈鹏,卢芳云,覃金贵,等. 含钨活性材料动态压缩力学性能[J].兵工学报,2015,36(10):1861-1866. CHEN Peng, LU Fang-yun, QIN Jin-gui, et al. Dynamic compressive mechanical properties of tungstenic reactive material[J]. Acta Armamentarii, 2015,36(10):1861-1866.

相似文献/References:

[1]张晓宏,赵凤起,谭惠民.用键合剂改善硝胺CMDB推进剂的力学性能[J].火炸药学报,2005,28(2):1.
[2]何吉宇,刘所恩,边小国,等.热塑性聚氨酯弹性体在改性双基推进剂中的应用[J].火炸药学报,2005,28(2):21.
[3]郑雪,李敬明,蓝林刚,等.PBX压缩疲劳过程中的红外热像试验研究[J].火炸药学报,2009,32(5):18.
[4]邓琼,叶婷,苗应刚.基于Hopkinson压杆实验技术研究火工品及含能材料的抗高过载能力[J].火炸药学报,2009,32(6):66.
[5]贾宪振,王浩,王建灵,等.PBX炸药的抗压强度及抗拉强度细观尺度的数值计算[J].火炸药学报,2014,37(1):49.
[6]陈言坤,罗兴柏,甄建伟,等.用改进巴西试验评价粒状发射药的抗拉强度[J].火炸药学报,2014,37(2):82.
 CHEN Yan-kun,LUO Xing-bai,ZHEN Jian-wei,et al.Evaluation of the Tensile Strength of Granular Gun Propellant with Improved Brazilian Test[J].,2014,37(2):82.
[7]崔云霄,陈鹏万,刘龑龙,等.PBX 9501炸药动态增强因子的预测公式[J].火炸药学报,2015,38(3):54.[doi:10.14077/j.issn.1007-7812.2015.03.010]
 CUI Yun-xiao,CHEN Peng wan,LIU Yuan long,et al.Predicted Formula of the Dynamic Increase Factor of PBX 9501[J].,2015,38(2):54.[doi:10.14077/j.issn.1007-7812.2015.03.010]
[8]唐明峰,颜熹琳,唐维,等.PBX中炸药晶体与黏结剂界面力学特性的研究进展[J].火炸药学报,2015,38(6):1.[doi:10.14077/j.issn.1007-7812.2015.06.001]
 TANG Ming-feng,YAN Xi-lin,TANG Wei,et al.Progress of Study on Mechanical Properties of the Crystal/Binder Interface in PBX[J].,2015,38(2):1.[doi:10.14077/j.issn.1007-7812.2015.06.001]
[9]崔云霄,陈鹏万,戴开,等.基于EFG方法的PBX炸药圆弧巴西实验的数值模拟[J].火炸药学报,2016,39(1):34.[doi:10.14077/j.issn.1007-7812.2016.01.005]
 CUI Yun-xiao,CHEN Peng-wan,DAI Kai-da,et al.Numerical Simulation of PBX under Circular Anvil BrazilianTest Based on EFG Method[J].,2016,39(2):34.[doi:10.14077/j.issn.1007-7812.2016.01.005]
[10]李尚昆,黄西成,王鹏飞.高聚物黏结炸药的力学性能研究进展[J].火炸药学报,2016,39(4):1.[doi:10.14077/j.issn.1007-7812.2016.04.001]
 LI Shang-kun,HUANG Xi-cheng,WANG Peng-fei.Recent Advances in the Investigation on Mechanical Properties of PBX[J].,2016,39(2):1.[doi:10.14077/j.issn.1007-7812.2016.04.001]

备注/Memo

备注/Memo:
收稿日期:2018-3-5;改回日期:2018-8-31。
基金项目:国家自然科学基金(No.11672328);国家安全重大基础研究项目
作者简介:陈鹏(1990-),男,博士研究生,从事新型毁伤元与战斗部技术研究。E-mail:cpsust@163.com
通讯作者:袁宝慧(1959-),男,研究员,从事战斗部技术研究。E-mail:ybhybh59@sina.com
更新日期/Last Update: 1900-01-01