|本期目录/Table of Contents|

[1]屈可朋,赵志江,沈飞,等.高速破片撞击下带壳装药响应及防护的试验研究[J].火炸药学报,2019,42(2):185-190.[doi:10.14077/j.issn.1007-7812.2019.02.014]
 QU Ke-peng,ZHAO Zhi-jiang,SHEN Fei,et al.Experimental Study on Response and Protection of Charge with Shell under High Velocity Fragment Impact[J].,2019,42(2):185-190.[doi:10.14077/j.issn.1007-7812.2019.02.014]
点击复制

高速破片撞击下带壳装药响应及防护的试验研究()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第2期
页码:
185-190
栏目:
出版日期:
2019-04-30

文章信息/Info

Title:
Experimental Study on Response and Protection of Charge with Shell under High Velocity Fragment Impact
作者:
屈可朋 赵志江 沈飞 王辉 肖玮 李亮亮 张帆
1. 西安近代化学研究所, 陕西 西安 710065;
2. 陆军装备部航空军代局, 北京 100036
Author(s):
QU Ke-peng ZHAO Zhi-jiang SHEN Fei WANG Hui XIAO Wei LI Liang-liang ZHANG Fan
1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
2. Army Equipment Department Aviation Military Representative Bureau, Beijing 100036, China
关键词:
爆炸力学标准破片带壳装药反应等级防护结构不敏感弹药高速破片
Keywords:
explosion mechanicsstandard fragmentcharge with shellreaction gradeprotective stuctureinsensitive ammunitionhigh velocity fragment
分类号:
TJ55;O38
DOI:
10.14077/j.issn.1007-7812.2019.02.014
文献标志码:
-
摘要:
以25 mm滑膛炮为加载手段,对带有不同厚度护板的装药进行了撞击加载实验,获取了18.6 g标准破片在1 820~1 830 m/s速度下撞击带壳装药时破片和护板的破坏形态及装药反应情况,提出了一种可降低带壳装药反应等级的防护结构。结果表明,防护板厚度为10 mm时,护板破坏形态为直径28 mm的同口径穿孔,贯穿护板后的破片形成若干大质量碎块;当护板厚度增加至16 mm时,护板背面产生了直径37 mm的剥落层,破片碎化为密集的小质量碎片群;相比若干大质量碎块导致的装药燃烧反应,密集的小质量碎片群更易在装药内部形成多个"热点"的叠加,进而使装药发生更为剧烈的爆燃反应;该复合防护结构可有效降低碎片群能量,对装药起到了良好的防护作用。
Abstract:
The impact loading tests of shell charge with different guard plate thickness were carried out using the 25 mm smoothbore cannon, the failure modes change and charge reaction state of fragment and guard plate under impacting the charge with shell by 18.6 g standard fragment at 1 820-1 830 m/s velocity were obtained, the charge response degree were observed by high speed photography, and a protective structure that can reduce the reaction grade of the charge with shell was proposed. The results show that when the thickness of front guard plate is 10 mm, the failure mode of the front guard plate is same diameter perforation with a diameter of 28 mm, and the fragments penetrating the front guard plate form several large quality fragments. When the thickness of front guard plate increases to 16 mm, the spalling layer with a diameter of 37 mm is formed on the back of front guard plate and the fragments become dense small quality fragment groups. Compared with the charge combustion reaction caused by several large quality fragments, the dense small quality fragment groups are more easily to form multiple hot spots in the charge interior, which will lead to more intense deflagration reaction of the charge. The composite protection structure can effectively reduce the energy of fragment groups and play a good role in protecting the charge.

参考文献/References:

[1] 李广武,赵继伟,杜兰春,等.常规导弹弹药安全性考核与技术[M].北京:中国宇航出版社,2015:1-16.
[2] MIL-STD-2105D,Hazard assessment tests for non-unclear munitions[S].2011.
[3] NATO STANAG 4439-2010,Policy for introduction and assessment of insensitive munitions(IM) ED3[S].2010.
[4] James H R, Haskins P J, Cook M.Prompt shock initiation of cased explosives by projectile impact[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(5):251-257.
[5] 刘鹏飞,智小琦,杨宝良,等.破片冲击起爆屏蔽B炸药比动能阈值研究[J].火炸药学报,2017,40(1):59-64. LIU Peng-fei,ZHI Xiao-qi,YANG Bao-liang,et al.Study on the specific kinetic energy threshold of fragments impacting initiation on covered composition B[J].Chinese Journal of Explosive & Propellants(Huozhayao Xuebao),2017,40(1):59-64.
[6] 孙宝平,段卓平,张海英,等.破片撞击装药点火实验和数值模拟[J]. 爆炸与冲击, 2013, 33(5):456-462. SUN Bao-ping, DUAN Zhuo-ping, ZHANG Hai-ying, et al. Experiment and numerical simulation on ignition of charge by fragment impact[J]. Explosion and Shock Waves, 2013, 33(5):456-462.
[7] 濮赞泉,郑宇,刘晓军,等.破片对不同壳体炸药冲击起爆研究[J].兵器材料科学与工程,2015,38(5):12-15. PU Zan-quan,ZHENG Yu,LIU Xiao-jun,et al.Shock initiation by fragments impacting different material shells covered explosive[J].Ordnance Material Science and Engineering,2015,38(5):12-15.
[8] 李小笠,屈明,路中华.三种破片对带壳炸药冲击起爆能力的数值分析[J].弹道学报,2009,21(4):72-75. LI Xiao-li,QU Ming,LU Zhong-hua.Numerical simulation on the impact effect of three type fragments impacting stell-covered charge[J].Journal of Ballistics, 2009,21(4):72-75.
[9] 童宗宝,王金相,彭楚才,等.预制破片对屏蔽炸药冲击引爆研究[J].科学技术与工程,2014,14(7):173-177. TONG Zong-bao,WANG Jin-xiang,PENG Chu-cai,et al.Study on the initiation of shielded explosive impacted by prefabricated fragment[J]. Science Technology and Engineering, 2014,14(7):173-177.
[10] Dai Xiao-gan,Wen Yu-shi,Wen Miao-ping,et al.Projectile impact ignition and reaction violent mechanism for HMX-based polymer bonded explosive at high temperature[J]. Propellants, Explosives, Pyrotechnics,2017,42:1-11.
[11] 孙承纬,卫玉章,周之奎.应用爆轰物理[M].北京:国防工业出版社,2000:429-436.
[12] 李鹏飞,屈可朋,杨磊. 侵彻战斗部缓冲结构的应力衰减研究[J]. 科学技术与工程, 2016,24:99-102. LI Peng-fei,QU Ke-peng,YANG Lei. Optimization design for the buffer structure of penetrating warhead[J]. Science Technology and Engineering, 2016,24:99-102.
[13] 王超,安振涛,甄建伟. 长方体破片对金属薄板的极限穿透速度研究[J]. 弹箭与制导学报, 2012,32(3):93-95. WANG Chao,AN Zhen-tao,ZHEN Jian-wei. The research on the limiting penetration velocity of cuboids fragment to metallic sheet[J]. Journal of Projectiles,Rocken,Missiles and Guidance, 2012,32(3):93-95.

相似文献/References:

[1]李翔宇,卢芳云.三种类型战斗部破片飞散的数值模拟[J].火炸药学报,2007,30(1):44.
[2]邢恩峰,钱建平,赵国志.装药结构参数对轴向预制破片抛掷速度的影响[J].火炸药学报,2007,30(1):49.
[3]朱继红.隧道开挖爆破振动对临近建筑物影响的安全评价[J].火炸药学报,2007,30(1):78.
[4]董树南,王世英,朱晋生,等.含ACP改性双基推进剂的燃烧转爆轰实验研究[J].火炸药学报,2007,30(2):17.
[5]李志鹏,黄毅民,龙新平,等.大板实验中TATB基炸药爆轰波的传播特征[J].火炸药学报,2007,30(2):26.
[6]邓向阳,彭其先,赵剑衡,等.测量电爆炸箔驱动飞片速度的实验研究[J].火炸药学报,2007,30(2):45.
[7]梁琴琴,王 军,黄奕刚.新型呋咱(氧化呋咱)类炸药爆轰参数的理论计算[J].火炸药学报,2007,30(2):59.
[8]何洋扬,龙 源.B炸药爆轰波拐角传播的三维数值模拟[J].火炸药学报,2007,30(2):63.
[9]李成兵,裴明敬,沈兆武.聚能杆式弹丸侵彻水夹层复合靶相似律分析[J].火炸药学报,2006,29(6):1.
[10]肖川 宋浦 梁安定.炸药水中爆炸规律的研究进展[J].火炸药学报,2006,29(6):19.

备注/Memo

备注/Memo:
收稿日期:2018-4-22;改回日期:2018-5-31。
基金项目:国家安全重大基础研究项目(No.05020501)
作者简介:屈可朋(1983-),男,副研究员,从事弹药动态力学响应及安全性研究。E-mail:155301498@qq.com
更新日期/Last Update: 1900-01-01