|本期目录/Table of Contents|

[1]李恒,赵凤起,裴庆,等.HNIW/GAP混合物燃速的实验研究与数值模拟[J].火炸药学报,2019,42(2):152-159.[doi:10.14077/j.issn.1007-7812.2019.02.009]
 LI Heng,ZHAO Feng-qi,PEI Qing,et al.Experimental Research and Numerical Simulation on the Burning Rate of HNIW/GAP Mixture[J].,2019,42(2):152-159.[doi:10.14077/j.issn.1007-7812.2019.02.009]
点击复制

HNIW/GAP混合物燃速的实验研究与数值模拟()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第2期
页码:
152-159
栏目:
出版日期:
2019-04-30

文章信息/Info

Title:
Experimental Research and Numerical Simulation on the Burning Rate of HNIW/GAP Mixture
作者:
李恒 赵凤起 裴庆 李猛 徐司雨 姚二岗 姜菡雨 郝海霞 马晓迅
1. 西安近代化学研究所燃烧与爆炸技术重点实验室, 陕西 西安 710065;
2. 西北大学化工学院, 陕西 西安 710069
Author(s):
LI Heng ZHAO Feng-qi PEI Qing LI Meng XU Si-yu YAO Er-gang JIANG Han-yu HAO Hai-xia MA Xiao-xun
1. Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
2. College of Chemical Engineering, Northwest University, Xi’an 710069, China
关键词:
物理化学HNIWGAP粒径预热层厚度燃烧机理CL-20自持燃烧
Keywords:
physical chemistryHNIWGAPparticle sizepreheated layer thicknesscombustion mechanismCL-20self-sustained combustion
分类号:
TJ55;O64
DOI:
10.14077/j.issn.1007-7812.2019.02.009
文献标志码:
-
摘要:
制备了HNIW/GAP二元混合物,在6~15 MPa压强范围测试了其静态燃速,研究了HNIW含量和压强对混合物燃速的影响;分析了HNIW粒径与预热层厚度对HNIW/GAP混合物燃速的影响规律;基于Relay-Race模型对燃速进行了模拟;分析了燃速控制机理,并采用DSC对HNIW/GAP混合物进行了热分析研究。结果表明,Relay-Race模型可以预测HNIW低含量时的部分燃速,在6~9 MPa下,混合物燃速随HNIW含量的增加而增大,在12~15 MPa下,混合物燃速随HNIW含量增加先减小后增大;在压强低于约0.2 MPa下,粒径62 μm的HNIW颗粒低于预热层厚度,不经历自持燃烧,增大HNIW粒径可以促进混合物燃烧;在HNIW与GAP质量比为1:1条件下,模拟的燃速增幅会随着粒径的增大而减小。当HNIW质量分数在0~30%时,混合物燃烧过程的反应控制区域由GAP转移至HNIW燃烧区域,从而导致燃速变化。
Abstract:
HNIW/GAP binary mixture was prepared. Its static burning rate was measured in the pressure range of 6-15 MPa. The effects of HNIW content and pressure on the burning rate of mixture were investigated. The influence rule of HNIW particle size and preheated layer thickness on the burning rate of HNIW/GAP mixture was analyzed. The burning rate was simulated based on Relay-Race model. The mechanism of controlling burning rate was analyzed and the thermal analysis study of HNIW/GAP mixture was performed by DSC. The results show that the Relay-Race model can predict the partial burning rate of HNIW at low HNIW content. The burning rate of the mixture increases with increasing the HNIW content at 6-9 MPa. The burning rate of the mixture decreases firstly and then increases with increasing the HNIW content at 12-15 MPa. When the pressure is lower than about 0.2 MPa, the particle of HNIW with the particle size of 62 μm is lower than preheated layer thickness and does not undergo self-sustained combustion and the combustion of mixture can be promoted by increasing the particle size of HNIW. The simulated amplitude of mixture burning rate decreases with the increase of HNIW particle size under the condition of mass ratio of HNIW/GAP as 1:1. The reaction controlling zone of mixture combustion process transfers from GAP combustion zone to that of HNIW with the HNIW mass ratio changing from 0 to 30%, which results in the change of burning rate.

参考文献/References:

[1] 赵凤起, 徐司雨, 李猛, 等. 含能材料燃烧模拟[M]. 北京:国防工业出版社, 2017:137-187.
[2] Beckstead M W, Puduppakkam K, Thakre P, et al. Modeling of combustion and ignition of solid-propellant ingredients[J]. Progress in Energy and Combustion Science, 2007, 33(6):497-551.
[3] Sinditskii V P, Egorshev V Y, Berezin M, et al. Combustion mechanism of nitro ester binders with nitramines[J]. Combustion, Explosion and Shock Waves, 2012, 48(2):163-176.
[4] Puduppakkam K, Tanner M, Beckstead M. RDX/GAP pseudo-propellant combustion modeling[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. New York:AIAA, 2006:1-13.
[5] QJB 770B-2005,方法706.2燃速水下声发射法[S].2005.
[6] QJ 925-85,复合固体推进剂药浆燃速测试方法[S].1985.
[7] 裴庆, 赵凤起, 高红旭, 等. 三唑含能离子盐在固体推进剂中的应用研究[J]. 兵工学报, 2014, 35(9):1388-1392. PEI Qing, ZHAO Feng-qi, GAO Hong-xu, et al. Research on application of energetic triazole ionic salts in solid propellant[J]. Acta Armamentarii, 2014, 35(9):1388-1392.
[8] 裴庆, 赵凤起, 郝海霞, 等. RDX-CMDB推进剂燃速温度敏感系数的实验研究[J]. 火炸药学报, 2016, 39(4):73-76. PEI Qing, ZHAO Feng-qi, HAO Hai-xia, et al. Experimental research on temperature sensitivity coefficient of burning rate for RDX-CMDB propellant[J]. Chinese Journal of Explosives & Propellant(Huozhayao Xuebao), 2016, 39(4):73-76.
[9] Fogelzang A E, Denisyuk A P, Serushkin V V, et al. Burning behavior of composite propellants with fast-burning inclusions[J]. Journal of Propulsion and Power, 2000, 16(2):374-376.
[10] Zarko V E, Gusachenko L K. Simulation of energetic materials combustion[R]. Novosibirsk:Russian Academy of Sciences Novosibirsk Institute of Chemical Kinetics and Combustion, 2000.
[11] Lengellé G, Duterque J, Trubert J. Combustion of solid propellants[R]. The RTO/VKI Special Course on Internal Aerodynamics in Solid Rocket Propulsion. Rhode-Saint-Genèse:RTO-EN-023, 2002:1-62.
[12] Atwood A, Boggs T, Curran P, et al. Burning rate of solid propellant ingredients, part 1:Pressure and initial temperature effects[J]. Journal of Propulsion and Power, 1999, 15(6):740-747.
[13] Sinditskii V, Chernyi A, Yurova S Y, et al. Thermal decomposition and combustion of cocrystals of CL-20 and linear nitramines[J]. RSC Advances, 2016, 6(84):81386-81393.
[14] Puduppakkam K V, Beckstead M W. Combustion modeling of glycidyl azide polymer with detailed kinetics[J]. Combustion Science and Technology, 2005, 177(9):1661-1697.
[15] Kubota N, Sonobe T, Yamamoto A, et al. Burning rate characteristics of GAP propellants[J]. Journal of Propulsion and Power, 1990, 6(6):686-689.
[16] Zenin A, Finjalov S. Physics of GAP combustion[C]//38th Aerospace Sciences Meeting and Exhibit. New York:AIAA, 2000:1-14.
[17] Korobeinichev O P, Kuibida L V, Volkov E N, et al. Mass spectrometric study of combustion and thermal decomposition of GAP[J]. Combustion and Flame, 2002, 129(1):136-150.
[18] Frankel M B, Grant L R, Flanagan J E. Historical development of glycidyl azide polymer[J]. Journal of Propulsion and Power, 1992, 8(3):560-563.
[19] Hori K, Kimura M. Combustion mechanism of glycidyl azide polymer[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(3):160-165.
[20] Kalman J, Essel J. Influence of particle size on the combustion of CL-20/HTPB propellants[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(11):1261-1267.
[21] 周晓杨, 唐根, 庞爱民, 等. GAP/CL-20高能固体推进剂燃烧性能影响因素[J].固体火箭技术, 2017, 40(5):592-595. ZHOU Xiao-yang, TANG Gen, PANG Ai-min, et al. Study on combustion performance of GAP/CL-20 high-energy solid propellants[J]. Journal of Solid Rocket Technology, 2017, 40(5):592-595.
[22] Golfier M, Graindorge H, Longevialle Y, et al. New energetic molecules and their applications in energetic materials[C]//Proceedings 29th International Annual Conference of ICT. Karlsruhe:ICT, 1998:1-18.
[23] Go?ofit T, Zy?k K. Thermal decomposition properties and compatibility of CL-20 with binders HTPB, PBAN, GAP and polyNIMMO[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(3):1931-1939.
[24] Turcotte R, Vachon M, Kwok Q S, et al. Thermal study of HNIW (CL-20)[J]. Thermochimica Acta, 2005, 433(1):105-115.
[25] Dong L, Li X, Yang R. Thermal decomposition study of HNIW by synchrotron photoionization mass spectrometry[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(6):493-498.
[26] Wang Tian-fang, Li Shu-fen, Yang Bin, et al. Thermal decomposition of glycidyl azide polymer studied by synchrotron photoionization mass spectrometry[J]. The Journal of Physical Chemistry B, 2007, 111(10):2449-2455.
[27] 王凯. 含能材料自催化分解特性与热安全性研究[D]. 南京:南京理工大学, 2016. WANG Kai. Research on the thermal autocatalytic decomposition characteristic and thermal safety of energetic materials[D]. Nanjing:Nanjing University of Science & Technology, 2016.

相似文献/References:

[1]何卫东,董朝阳.高分子钝感发射药的低温感机理[J].火炸药学报,2007,30(1):9.
[2]张 昊,彭 松,庞爱民,等.NEPE推进剂老化过程中结构与力学性能的关系[J].火炸药学报,2007,30(1):13.
[3]路向辉,曹继平,史爱娟,等.表面处理芳纶纤维在丁羟橡胶中的应用[J].火炸药学报,2007,30(1):21.
[4]李春迎,王 宏,孙 美,等.遥感FTIR光谱技术在固体推进剂羽焰测试中的应用[J].火炸药学报,2007,30(1):28.
[5]杜美娜,罗运军.RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36.
[6]王国栋,刘玉存.神经网络在炸药晶体密度预测中的应用[J].火炸药学报,2007,30(1):57.
[7]周诚,黄新萍,周彦水,等.FOX-7的晶体结构和热分解特性[J].火炸药学报,2007,30(1):60.
[8]张秋越,孟子晖,肖小兵,等.用分子烙印聚合物吸附溶液中的TNT[J].火炸药学报,2007,30(1):64.
[9]崔建兰,张 漪,曹端林.三羟甲基丙烷三硝酸酯的热分解性能[J].火炸药学报,2007,30(1):71.
[10]李进华,孙兆懿.四氧化二氮胶体饱和蒸气压的测试及分析[J].火炸药学报,2007,30(1):74.
[11]李丽洁,陈树森,冉军鹏,等.不同结晶体系中PNMAIW对HNIW 转晶影响的理论研究[J].火炸药学报,2009,32(4):1.
 LI Li jie,CHEN Shu sen,RAN Jun peng,et al.Theoretical Study of the Effect of PNMAIW on HNIW Crystal Transition in Different Crystal Systems[J].,2009,32(2):1.
[12]姜夏冰,焦清介,任慧,等.高聚物黏结ε-HNIW混合炸药的制备及其感度[J].火炸药学报,2011,34(3):21.
 JIANG Xia-bing,JIAO Qing-jie,REN Hui,et al.Preparation and Sensitivity of Mixture Explosive of Polymer Bonded ε-HNIW[J].,2011,34(2):21.
[13]郭学永,姜夏冰,于兰,等.粒径和晶形对ε-HNIW感度的影响[J].火炸药学报,2013,36(1):29.
 GUO Xue-yong,JIANG Xia-bing,YU Lan,et al.Effect of Particle Size and Morphology on the Sensitivity of ε-HNIW[J].,2013,36(2):29.

备注/Memo

备注/Memo:
收稿日期:2018-9-24;改回日期:2019-1-7。
基金项目:国家自然科学基金(No.21473130)
作者简介:李恒(1985-)男,博士,从事固体燃料化学研究。E-mail:zerolhheart@163.com
通讯作者:赵凤起(1963-),男,研究员,博导,从事固体推进剂研究。E-mail:zhaofqi@163.com
更新日期/Last Update: 1900-01-01