|本期目录/Table of Contents|

[1]杭贵云,余文力,王涛,等.分子动力学法研究掺杂缺陷对HMX/NQ共晶炸药性能的影响[J].火炸药学报,2019,42(2):145-151.[doi:10.14077/j.issn.1007-7812.2019.02.008]
 HANG Gui-yun,YU Wen-li,WANG Tao,et al.Investigating the Effect of Adulteration Defect on the Properties of HMX/NQ Cocrystal Explosive by Molecular Dynamics Method[J].,2019,42(2):145-151.[doi:10.14077/j.issn.1007-7812.2019.02.008]
点击复制

分子动力学法研究掺杂缺陷对HMX/NQ共晶炸药性能的影响()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第2期
页码:
145-151
栏目:
出版日期:
2019-04-30

文章信息/Info

Title:
Investigating the Effect of Adulteration Defect on the Properties of HMX/NQ Cocrystal Explosive by Molecular Dynamics Method
作者:
杭贵云 余文力 王涛 王金涛 苗爽
火箭军工程大学, 陕西 西安 710025
Author(s):
HANG Gui-yun YU Wen-li WANG Tao WANG Jin-tao MIAO Shuang
Rocket Force University of Engineering, Xi’an 710025, China
关键词:
物理化学共晶炸药晶体缺陷结合能HMX/NQ爆轰性能力学性能分子动力学
Keywords:
physical chemistrycocrystal explosivecrystal defectbinding energyHMX/NQdetonation performancemechanical propertiesmolecular dynamics
分类号:
TJ55;O64
DOI:
10.14077/j.issn.1007-7812.2019.02.008
文献标志码:
-
摘要:
为了研究掺杂晶体缺陷对HMX/硝基胍(NQ)共晶炸药性能的影响,分别建立了"完美"型与含有掺杂缺陷的HMX/NQ共晶炸药模型;采用分子动力学方法,预测了各种模型的稳定性、感度、爆轰性能和力学性能,得到了不同模型的结合能、引发键键长分布、引发键键连双原子作用能、内聚能密度、爆轰参数和力学参数并与"完美"型模型进行了比较。结果表明,与"完美"型晶体相比,缺陷晶体的结合能减小幅度为1.28%~11.05%,表明分子之间的相互作用力减弱,炸药的稳定性降低;缺陷晶体的引发键键长增大幅度为0.46%~5.29%,而键连双原子作用能减小幅度为0.63%~17.24%,内聚能密度减小幅度为0.83%~10.85%,表明炸药的感度升高,安全性降低;缺陷晶体的密度、爆速和爆压减小幅度分别为0.89%~7.06%、0.68%~5.41%、1.85%~14.18%,表明威力与能量密度降低;由于晶体缺陷的影响,拉伸模量、体积模量和剪切模量减小幅度分别为0.106~4.368 GPa、0.086~2.573 GPa和0.082~1.835 GPa,柯西压增大幅度为0.108~1.787 GPa,表明炸药的刚性与硬度降低,延展性增强。因此,晶体缺陷会对HMX/NQ共晶炸药的稳定性、感度和爆轰性能产生不利影响。
Abstract:
To research the effect of adulteration crystal defect on the properties of HMX/nitroguanidine (NQ) cocrystal explosive, the perfect model and HMX/NQ cocrystal explosive model with adulteration defect were established, respectively. The stability, sensitivity, detonation performance and mechanical properties of various models were predicted by molecular dynamics method. The binding energy, trigger bond length distribution, interaction energy of the N-N trigger bond, cohesive energy density, detonation parameters and mechanical properties of different models were obtained and compared with that of the perfect model. The results show that compared with the perfect crystal, the decrease range of binding energy of defective crystal is 1.28%-11.05%, which indicates that the intermolecular interaction energy decreases and the stability of explosive decreases. The increase range of trigger bond length of defective crystal is 0.46%-5.29%, while the decrease range of interaction energy of the N-N trigger bond is 0.63%-17.24% and the decrease range of cohesive energy density is 0.83%-10.85%, indicating that the sensitivity of explosive increases and the safety decreases. The decrease range of density, detonation velocity and detonation pressure of defective crystal is 0.89%-7.06%, 0.68%-5.41%, 1.85%-14.18%, respectively, meaning that the power and energy density decrease. Owing to the influence of crystal defect, the decrease range of tensile modulus, bulk modulus and shear modulus is 0.106-4.368 GPa, 0.086-2.573 GPa and 0.082-1.835 GPa, respectively, the increase range of Cauchy pressure is 0.108-1.787 GPa, indicating that the rigidity and hardness decrease, while the ductility increases. Therefore, crystal defect will have a negative effect on stability, sensitivity and detonation performance of HMX/NQ cocrystal explosive.

参考文献/References:

[1] 丁雄. 以硝基胍为基的钝感高能共晶含能材料设计[D]. 太原:中北大学,2016. DING Xiong. Design of insensitive high-energy cocrystal energetic materials based on nitroguanidine[D]. Taiyuan:North University of China, 2016.
[2] Labarbera D A, Zikry M A. The effects of microstructural defects on hot spot formation in cyclotrimethylenetrinitramine-polychlorotrifluoroethylene energetic aggregates[J]. Journal of Applied Physics, 2013, 113:243502.
[3] Luscher D J, Addessio F L, Cawkwell M J, et al. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine[J]. Journal of the Mechanics and Physics of Solids, 2017, 98:63-86.
[4] Xue X G, Wen Y S, Long X P, et al. Influence of dislocations on the shock sensitivity of RDX:molecular dynamics simulations by reactive force field[J]. The Journal of Physical Chemistry C, 2015, 119:13735-13742.
[5] 彭亚晶,蒋艳雪. 分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响[J]. 物理学报,2015,64(24):243102-1-243102-9. PENG Ya-jing, JIANG Yan-xue. Analyses of the infl-uences of molecular vacancy defect on the geometrical structure, electronic structure, and vibration characteristics of Hexogeon energetic material[J]. Acta Physica Sinica, 2015, 64(24):243102-1-243102-9.
[6] Accelrys Software Inc. Materials Studio 7.0[CP/CD]. San Diego:[s.n.], 2013.
[7] Sun H. Compass:an abinitio force-field optimized for condense-phase applications-overview with details on alkanes and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102:7338-7364.
[8] Sun H, Ren P, Fried J R. The COMPASS force field:parameterization and validation for phosphazenes[J]. Computational and Theoretical Polymer Science, 1998, 8:229-246.
[9] Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. Journal of Chemical Physics, 1980, 72(4):2384-2393.
[10] Parrinello M, Rahman A. Polymorphic transitions in single crystals:a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12):7182-7190.
[11] Bowden F P, Yoffe A D. Initiation and Growth of Explosion in Liquids and Solids[M]. Cambridge:Cambridge University Press, 1952.
[12] Kamlet M J, Adoiph H G. The relationship of impact sensitivity with structure of organic high explosives[J]. Propellants, Explosives, Pyrotechnics, 1979, 4:30-34.
[13] 刘强,肖继军,陈军,等. 不同温度下ε-CL-20晶体感度和力学性能的分子动力学模拟计算[J]. 火炸药学报,2014,37(2):7-12. LIU Qiang, XIAO Ji-jun, CHEN Jun, et al. Molecular dynamics simulations on sensitivity and mechanical properties of ε-CL-20 crystal at different temperatures[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2014, 37(2):7-12.
[14] 赵丽,肖继军,陈军,等. RDX基PBX的模型、结构、能量及其与感度关系的分子动力学研究[J]. 中国科学:化学,2013,43(5):576-584. ZHAO Li, XIAO Ji-jun, CHEN Jun, et al. Molecular dynamics study on the relationships of modeling, structural structure and energy properties with sensitivity for RDX-based PBXs[J]. Scientia Sinica Chemica, 2013, 43(5):576-584.
[15] 刘冬梅,赵丽,肖继军,等. 不同温度下HMX和RDX晶体的感度判别和力学性能预估-分子动力学比较研究[J]. 高等学校化学学报,2013,34(11):2558-2565. LIU Dong-mei, ZHAO Li, XIAO Ji-jun, et al. Sensitivity criterion and mechanical properties prediction of HMX and RDX crystals at different temperatures-comparative study with molecular dynamics simulation[J]. Chemical Journal of Chinese Universities, 2013, 34(11):2558-2565.
[16] Xiao J J, Zhao L, Zhu W, et al. Molecular dynamics study on the relationships of modeling, structural and energy properties with sensitivity for RDX-based PBXs[J]. Science China Chemistry, 2012, 55(12):2587-2594.
[17] Mullay J. Relationship between impact sensitivity and molecular electronic structure[J]. Propellants, Explosives, Pyrotechnics, 1987, 12:121-124.
[18] Brill B T, James J K. Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives[J]. Chemical Reviews, 1993, 93:2667-2692.
[19] 国迂贤,张厚生. 炸药爆轰性质计算的氮当量公式及修正氮当量公式:炸药爆速的计算[J]. 爆炸与冲击,1983,3(3):56-66. GUO Yu-xian, ZHANG Hou-sheng. Nitrogen equivalent (NE) and modified nitrogen equivalent (MNE) equations for predicting detonation parameters of explosives-prediction of detonation velocity of explosives[J]. Explosion and Shock Waves, 1983, 3(3):56-66.
[20] 王玉玲,余文力. 炸药与火工品[M]. 西安:西北工业大学出版社,2011.
[21] 吴家龙. 弹性力学[M]. 上海:同济大学出版社,1993.
[22] Weiner J H. Statistical Mechanics of Elasticity[M]. New York:John Wiley, 1983.

相似文献/References:

[1]何卫东,董朝阳.高分子钝感发射药的低温感机理[J].火炸药学报,2007,30(1):9.
[2]张 昊,彭 松,庞爱民,等.NEPE推进剂老化过程中结构与力学性能的关系[J].火炸药学报,2007,30(1):13.
[3]路向辉,曹继平,史爱娟,等.表面处理芳纶纤维在丁羟橡胶中的应用[J].火炸药学报,2007,30(1):21.
[4]李春迎,王 宏,孙 美,等.遥感FTIR光谱技术在固体推进剂羽焰测试中的应用[J].火炸药学报,2007,30(1):28.
[5]杜美娜,罗运军.RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36.
[6]王国栋,刘玉存.神经网络在炸药晶体密度预测中的应用[J].火炸药学报,2007,30(1):57.
[7]周诚,黄新萍,周彦水,等.FOX-7的晶体结构和热分解特性[J].火炸药学报,2007,30(1):60.
[8]张秋越,孟子晖,肖小兵,等.用分子烙印聚合物吸附溶液中的TNT[J].火炸药学报,2007,30(1):64.
[9]崔建兰,张 漪,曹端林.三羟甲基丙烷三硝酸酯的热分解性能[J].火炸药学报,2007,30(1):71.
[10]李进华,孙兆懿.四氧化二氮胶体饱和蒸气压的测试及分析[J].火炸药学报,2007,30(1):74.
[11]杭贵云,余文力,王涛,等.CL-20/DNB共晶炸药晶体缺陷的理论计算[J].火炸药学报,2018,41(4):345.[doi:10.14077/j.issn.1007-7812.2018.04.005]
 HANG Gui-yun,YU Wen-li,WANG Tao,et al.Theoretical Calculation on Crystal Defect of CL-20/DNB Cocrystal Explosive[J].,2018,41(2):345.[doi:10.14077/j.issn.1007-7812.2018.04.005]

备注/Memo

备注/Memo:
收稿日期:2018-5-4;改回日期:2018-5-31。
基金项目:武器装备预先研究项目(No.403020302)
作者简介:杭贵云(1989-),男,博士研究生,从事导弹战斗部工程研究。E-mail:1910319052@qq.com
更新日期/Last Update: 1900-01-01