|本期目录/Table of Contents|

[1]黄海涛,王传华,谢五喜,等.金属铋对铝基水反应材料水解性能的影响[J].火炸药学报,2019,42(2):131-134.[doi:10.14077/j.issn.1007-7812.2019.02.005]
 HUANG Hai-tao,WANG Chuan-hua,XIE Wu-xi,et al.Effect of Bismuth on Hydrolysis Properties of Aluminum-based Hydro-reactive Metal Materials[J].,2019,42(2):131-134.[doi:10.14077/j.issn.1007-7812.2019.02.005]
点击复制

金属铋对铝基水反应材料水解性能的影响()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第2期
页码:
131-134
栏目:
出版日期:
2019-04-30

文章信息/Info

Title:
Effect of Bismuth on Hydrolysis Properties of Aluminum-based Hydro-reactive Metal Materials
作者:
黄海涛 王传华 谢五喜 赵昱 鲍远鹏
1. 西安近代化学研究所, 陕西 西安 710065;
2. 北京理工大学材料学院, 北京 100081
Author(s):
HUANG Hai-tao WANG Chuan-hua XIE Wu-xi ZHAO Yu BAO Yuan-peng
1. Xi’an Modern Chemistry Research lnstitute, Xi’an 710065, China;
2. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
关键词:
应用化学铝-铋高能球磨水解性能产氢速率水反应材料
Keywords:
applied chemistryaluminum-bismuth metalhigh-energy millinghydrolysis propertieshydrogen generation ratehydro-reactive material
分类号:
TJ55;O69
DOI:
10.14077/j.issn.1007-7812.2019.02.005
文献标志码:
-
摘要:
采用高能球磨法制备了Al-Bi复合材料,研究了铋含量对水反应材料转化速率的影响,及铝/水质量比和起始反应水温对铝基水反应活性材料的水解反应性能的影响。结果表明,铋质量分数由0增加至10%,复合材料的氢气转化率由5.4%先提高至71.2%后降低至62.4%,其中铋的最佳质量分数为5%。随着铝/水质量比从1:40变化至1:100,对复合材料转化率的影响较小,但对反应速率影响明显,其中铝/水质量比为1:60时产氢速率最高,达到114 mL/(min·g)。复合材料的产氢速率和氢气转化效率随着海水起始温度的增加而增加,海水起始温度由20℃提高到80℃,氢气转化效率提高了29.8%。
Abstract:
The Al-Bi composites were prepared by high-energy ball milling method, and the effect of bismuth content on the conversion rate of hydro-reactive materials was studied. The effects of Al/water mass ratio and the initial reaction water temperature on the hydrolysis performance of Al-based hydro-reactive active materials were studied. The results show that bismuth content increases from 0 to 10%, hydrogen conversion of the composites increases from 5.4% to 71.2% first and then decreases to 62.4%,in which, the optimum mass fraction of bismuth is 5%. With the change of Al/water mass ratio from 1:40 to 1:100, the conversion of the composites is less affected, but the effect on the reaction rate is obvious. The hydrogen production rate is the highest of 114 mL/(min·g) when mass ratio of Al/water is 1:60.The hydrogen generation rate and conversion yield of the composites increases with the incurease of the initial temperature of seawater, and when the initial temperature of seawater increases from 20℃ to 80℃, the hydrogen conversion yield increases by 29.8%.

参考文献/References:

[1] Zou M S, Yang R J, Guo X Y, et al. The preparation of Mg-based hydro-reactive materials and their reactive properties in seawater[J]. International Journal of Hydrogen Energy, 2011,36(11):6478-6483.
[2] Huang H T, Zou M S, Guo X Y, et al. Study of reactions of activated Mg-based powders in heated steam[J]. Journal of Power Sources, 2014, 246(3):960-964.
[3] Huang H T, Zou M S, Guo X Y, et al. Analysis of the aluminum reaction efficiency in hydro-reactive fuel propellant used for water ramjet[J].Combustion, Explosion, and Shock Waves, 2013, 49(5):541-547.
[4] Hiraki T, Akiama T. Energetic life cycle assessment of new waste aluminium treatment system with co-production of pressurized hydrogen and aluminium hydroxide[J]. International Journal of Hydrogen Energy, 2009, 34(1):153-161.
[5] Lluis S, Jorge M, Maria M, et al. Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications[J]. Journal of Power Sources, 2007,169(1):144-149.
[6] Kojima Y, Suzuki K, Fukumoto K, et al. Development of 10 kW-scale hydrogen generator using chemical hydride[J]. Journal of Power Sources, 2004, 125(1):22-26.
[7] Franzoni F, Milani M, Montorsi L. Combined hydrogen production and power generation from aluminum combustion with water:analysis of the concept[J]. International Journal of Hydrogen Energy, 2010, 35(4):1548-1559.
[8] Zou M S, Yang R J, Guo X Y, et al. The preparation of Mg-based hydro-reactive materials and their reactive properties in seawater[J]. International Journal of Hydrogen Energy, 2011,36(11):6478-6483.
[9] Grosjean M H, Zidoune M, Roue L. Hydrogen production from highly corroding Mg-based materials elaborated by ball milling[J]. Journal of Alloys and Compounds, 2005, 404-406:712-715.
[10] Zhao Z, Chen X, Hao M. Hydrogen generation by splitting water with Al-Ca alloy[J]. Fuel & Energy Abstracts, 2011, 36(5):2782-2787.
[11] Troczynski T, Czech E. Compositions and methods for generating hydrogen from water:US,0232837A1[P]. 2005.
[12] Grosjean M H, Zidoune M, Roue L, et al. Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials[J]. International Journal of Hydrogen Energy,2006,31(1):109-119.
[13] Dupiano P, Stamatis D, Dreizin E L. Hydrogen production by reacting water with mechanically milled composite aluminum-metal oxide powders[J]. International Journal of Hydrogen Energy, 2011,36(8):4781-4791.
[14] Fan Mei-qiang, Xu Fen, Sun Li-xian, et al. Hydrolysis of ball milling Al-Bi-hydride and Al-Bi-salt mixture for hydrogen generation[J]. Journal of Alloys and Compounds, 2008,460(1):125-129.
[15] Fan Mei-qiang, Xu Fen, Sun Li-xian. Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water[J]. International Journal of Hydrogen Energy, 2007,32(14):2809-2815.
[16] Bunker B C, Nelson G C, Zavadil K R, et al. Hydration of passive oxide films on aluminum[J]. Journal of Physical Chemistry B, 2002, 106(18):4705-4713.
[17] Correia A N, Machado S A S, Avaca L A. Studies of the hydrogen evolution reaction on smooth Co and electrodeposited Ni-Co ultra-microelectrodes[J]. Electrochemistry Communications, 1999, 1(12):600-604.
[18] Wang Chuan-hua, Guo Xiao-yan, Zou Mei-shuai, et al. Preparation and hydro-reactivity of ball-milled aluminum-based hydro-reactive metal materials[J]. Acta Armamentarii, 2016,34(5):817-821.
[19] Fan M Q, Xu F, Sun L X. Hydrogen generation by hydrolysis reaction of ball-milled Al-Bi alloys[J]. Energy & Fuels, 2007, 21(4):2294-2298.

相似文献/References:

[1]赵孝彬,蒲远远,陈教国,等.武器信息化条件下火炸药发展策略分析[J].火炸药学报,,():7.
 ZHAO Xiao-bin,PU Yuan-yuan,CHEN Jiao-guo,et al.The Analysis about Developed Strategy of Propellant and Explosive in the Circumstances of Weapon Informationization[J].,,(2):7.
[2]赵孝彬,蒲远远,陈教国,等.NEPE推进剂的燃烧转爆轰特性[J].火炸药学报,2007,30(1):4.
[3]肖正刚,应三九,徐复铭,等.发射药的等离子体点火燃烧中止试验研究[J].火炸药学报,2007,30(1):17.
[4]张晓宏,莫红军.下一代战术导弹固体推进剂研究进展[J].火炸药学报,2007,30(1):24.
[5]李 鹏,刘有智,李裕,等.用旋转填料床治理火炸药厂的氮氧化物尾气[J].火炸药学报,2007,30(1):67.
[6]周润强,刘德新,曹端林,等.硝酸脲与RDX共晶炸药研究[J].火炸药学报,2007,30(2):49.
[7]石 飞,王庆法,张香文,等.1,2-丙二醇二硝酸酯的绿色合成[J].火炸药学报,2007,30(2):75.
[8]马海霞,宋纪蓉,胡荣祖.3-硝基-1,2,4-三唑-5-酮及其盐的研究概述[J].火炸药学报,2006,29(6):9.
[9]陆明,周新利.RDX的TNT包覆钝感研究[J].火炸药学报,2006,29(6):16.
[10]刘有智,刁金祥,王贺,等.超重力-臭氧法处理TNT红水的试验研究[J].火炸药学报,2006,29(6):41.

备注/Memo

备注/Memo:
收稿日期:2018-5-9;改回日期:2018-12-5。
基金项目:University Collaborative Innovation Project of Norinco Group (No.KH2016001)
作者简介:HUANG Hai-tao (1986-),male,doctor,research direction:water-reactive metal fuels and composite propellants.E-mail:shanshuishou@126.com
更新日期/Last Update: 1900-01-01