|本期目录/Table of Contents|

[1]杨秀荣,张驰,高红旭,等.密度泛函理论研究NO在CuO(1 1 1)的表面吸附[J].火炸药学报,2019,42(2):125-130,190.[doi:10.14077/j.issn.1007-7812.2019.02.004]
 YANG Xiu-rong,ZHANG Chi,GAO Hong-xu,et al.Study of NO Adsorption on CuO(1 1 1) Surface by Density Functional Theory[J].,2019,42(2):125-130,190.[doi:10.14077/j.issn.1007-7812.2019.02.004]

密度泛函理论研究NO在CuO(1 1 1)的表面吸附()




Study of NO Adsorption on CuO(1 1 1) Surface by Density Functional Theory
杨秀荣 张驰 高红旭 赵凤起 牛诗尧 马海霞
1. 西北大学化工学院, 陕西 西安 710069;
2. 西安近代化学研究所燃烧与爆炸技术重点实验室, 陕西 西安 710065
YANG Xiu-rong ZHANG Chi GAO Hong-xu ZHAO Feng-qi NIU Shi-yao MA Hai-xia
1. School of Chemical Engineering, Northwest University, Xi’an 710069, China;
2. Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
quantum chemistrydensity functional theorynano CuONOadsorption
为了深入研究纳米CuO与含能材料分解产生的NO间的相互作用,采用密度泛函理论研究了NO在CuO(1 1 1)表面的吸附行为,同时在NO吸附的最稳定位点研究NO2在Cu表面的吸附及其对NO的影响;通过DMol3模块中广义梯度密度泛函理论(GGA)的Perdew-Burke-Ernzerh(PBE)方法对吸附构型进行了计算。结果表明,NO以分子形式吸附在CuO(1 1 1)表面,较为稳定的吸附构型为NO的N原子与CuO表面的Cu、O原子相互作用,均为化学吸附;最稳定的吸附构型为NO吸附在Cu1位点上,吸附能为-0.89 eV;HOMO-LUMO轨道能隙值和态密度图分析均表明NO和CuO表面有强烈相互作用;Mulliken电荷布局分析显示,电荷从NO转移到Cu表面,NO带部分正电荷;在含能材料分解过程中,NO气体稳定吸附在CuO表面,但当存在NO2时,NO的吸附位点可能会被吸附能力更强的NO2占据。
To deeply study the interaction between nano CuO and NO produced by the decomposition of energetic materials (EMs), the adsorption behavior of NO on CuO(1 1 1) surface was investigated using density functional theory and at the most stable point of NO adsorption, the adsorption of NO2 on the surface of Cu surface and its influence on NO were studied. The adsorption configuration was calculated by the Perdew-Burke-Ernzerh (PBE) method of generalized gradient approximation (GGA) in DMol3 module. The results show that NO is adsorbed on the surface of CuO(1 1 1) in molecular form. The stable adsorption configuration is that the nitrogen atoms of NO interacts with the oxygen and copper atoms on the surface of CuO and all of them are chemical adsorption. The most stable adsorption configuration is that NO is adsorbed on Cu1 site and the adsorption energy is -0.89 eV. The analysis of the HOMO-LUMO gaps and density of states indicate that there is a strong interaction between NO and CuO surface. Mulliken charge analysis shows that the charge transfers from NO to Cu surface, thus NO has a partial positive charge. In the decomposition process of EMs, NO gas is stably adsorbed on the surface of CuO, but the adsorption sites of NO may be occupied when there is NO2 which has a stronger adsorption ability.


[1] 张英杰, 李航舵. 纳米燃速催化剂的研究进展[J]. 兵器材料科学与工程, 2012, 35(4):112-116. ZHANG Ying-jie, LI Hang-duo. Research progress of nano-burning catalysts[J]. Ordnance Material Science and Engineering, 2012, 35(4):112-116.
[2] 王雅乐, 卫芝贤, 康丽. 固体推进剂用燃烧催化剂的研究进展[J]. 含能材料, 2015, 23(1):89-98. WANG Ya-le, WEI Zhi-xian, KANG Li. Research progress on combustion catalyst of solid propellant[J]. Chinese Journal of Energetic Materials, 2015, 23(1):89-98.
[3] 张正中, 邓重清, 屈蓓,等. 纳米材料在固体推进剂中的应用进展[J]. 化学推进剂与高分子材料, 2016, 14(6):37-44. ZHANG Zheng-zhong, DENG Chong-qing, QU Bei, et al. Application progress of nano materials in solid propellant[J]. Chemical Propellants and Polymeric Materials, 2016,14(6):37-44.
[4] 郝嘎子, 刘杰, 高寒,等. 纳米CuO的制备及其对AP热分解的催化作用[J]. 火炸药学报, 2015, 38(4):18-21. HAO Ga-zi, LIU Jie, GAO Han, et al. Preparation of nano-sized CuO and its catalytic effect on the thermal decomposition of AP[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(4):18-21.
[5] 刘健冰, 赵宁宁, 赵凤起,等. 海胆状纳米MnO2的制备及其对CL-20热分解性能的影响[J]. 火炸药学报, 2015, 38(2):19-24. LIU Jian-bing, ZHAO Ning-ning, ZHAO Feng-qi, et al. Preparation of sea urchin-like nano-MnO2 and its effect on thermal decomposition performance of CL-20[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(2):19-24.
[6] Vargeese A A, Muralidharan K, Krishnamurthy V N. Kinetics of nano titanium dioxide catalyzed thermal decomposition of ammonium nitrate and ammonium nitrate-based composite solid propellant[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2):260-266.
[7] 洪伟良, 刘剑洪, 赵凤起,等. 纳米CuO·PbO的制备及对RDX热分解的催化作用[J]. 含能材料, 2003, 11(2):76-80. HONG Wei-liang, LIU Jian-hong, ZHAO Feng-qi, et al. Preparation of nano-sized CuO·PbO and its catalysis on thermal decomposition of RDX[J]. Chinese Journal of Energetic Materials, 2003, 11(2):76-80.
[8] 刘浩. 纳米PbCO3/CuO复合粒子的制备及其催化性能的研究[D]. 南京:南京理工大学, 2017. LIU Hao. Preparation and catalytic properties of nano PbCO3/CuO composite particles[D]. Nanjing:Nanjing University of Science and Technology, 2017.
[9] 向东, 吴琼, 朱卫华. 运用从头算动力学方法研究极端条件下CL-20的分解机理[J]. 含能材料, 2018,26(1):59-65. XIANG Dong, WU Qiong, ZHU Wei-hua. Abinitio molecular dynamics studies on the decomposition mechanisms of CL-20 crystal under extreme conditions[J]. Chinese Journal of Energetic Materials, 2018,26(1):59-65.
[10] 徐哲. FOX-7和CL-20复合体系热分解机理研究[D]. 太原:中北大学, 2017. XU Zhe. Study on thermal decomposition mechanism of FOX-7 and CL-20 composite system[D]. Taiyuan:North University of China, 2017.
[11] Delley B. DMol3 DFT studies:from molecules and molecular environments to surfaces and solids[J]. Computational Materials Science, 2000, 17(2/4):0-126.
[12] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
[13] Tkatchenko A, Scheffler M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data[J]. Physical Review Letters, 2009, 102(7):0730051-0730054.
[14] Hamann D R. Generalized norm-conserving pseudopotentials[J]. Physical Review B, Condensed Matter, 1989, 40(5):2980-2987.
[15] Becke A D. A multicenter numerical integration scheme for polyatomic molecules[J]. Journal of Chemical Physics, 1988, 88(4):2547-2550.
[16] Song Z, Wang B, Yu J, et al. Density functional study on the heterogeneous oxidation of NO over α-Fe2O3 catalyst by H2O2:effect of oxygen vacancy[J]. Applied Surface Science, 2017, 413:292-301.
[17] Gao Y, Zhang L M, Kong C C, et al. NO adsorption and dissociation on palladium clusters:the importance of charged state and metal doping[J]. Chemical Physics Letters, 2016, 658:7-11.
[18] Asbrink S, Norrby L J. A refinement of the crystal structure of copper(Ⅱ) oxide with a discussion of some exceptional e.s.d.’s[J]. Acta Crystallographica, 2010, 26(1):8-15.
[19] Zhao W, Tian F H, Wang X, et al. Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface:a density functional theory study[J]. Journal of Colloid and Interface Science, 2014, 430:18-23.
[20] Hu J, Li D, Lu J G, et al. Effects on electronic properties of molecule adsorption on CuO surfaces and nanowires[J]. Journal of Physical Chemistry C, 2010, 114(40):17120-17126.
[21] Hu R M, Zhou X L. First-principles study of NO molecules adsorption on Ag-doped CuO(111) surface[J]. Computational & Theoretical Chemistry, 2017, 1122:47-52.
[22] 张禁. 乙炔选择性加氢反应中Cu催化剂表面结构、价态及金属掺杂对乙烯选择性的影响[D]. 太原:太原理工大学, 2017.ZHANG Jin. Effects of surface structure, valence and metal doping of Cu catalyst on ethylene selectivity in selective hydrogenation of acetylene[D]. Taiyuan:Taiyuan University of Technology, 2017.
[23] Sun S, Li C, Zhang D, et al. Density functional theory study of the adsorption and dissociation of O2 on CuO(111) surface[J]. Applied Surface Science, 2015, 333:229-234.
[24] Inada Y, Orita H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes:evidence of small basis set superposition error compared to Gaussian basis sets[J]. Journal of Computational Chemistry, 2008, 29(2):225-232.
[25] Raina Panta, Vithaya Ruangpornvisuti. Adsorption of hydrogen molecule on noble metal doped on oxygen-vacancy defect of anatase TiO2(101) surface:periodic DFT study[J]. International Journal of Hydrogen Energy, 2017, 42(30):19106-19113.
[26] 赵旭芳, 宋纪蓉, 赵凤起,等. NO在(Fe2O3)n(2 ≤ n ≤ 6)团簇上吸附的密度泛函理论研究[J]. 计算机与应用化学, 2015, 32(3):309-314. ZHAO Xu-fang, SONG Ji-rong, ZHAO Feng-qi, et al. Density functional Theory study of NO adsorption on (Fe2O3)n(2 ≤ n ≤ 6) clusters[J]. Computer and Applied Chemistry, 2015, 32(3):309-314.
[27] Omidvar A. Indium-doped and positively charged ZnO nanoclusters:versatile materials for CO detection[J]. Vacuum, 2017, 147:126-133.
[28] 王晓红, 张皋, 谢明召, 等. T-Jump/FTIR联用技术研究CL-20的热分解机理[J]. 固体火箭技术, 2010, 33(6):675-679. WANG Xiao-hong, ZHANG Gao, XIE Ming-zhao, et al. Investigation on thermal decomposition of CL-20 by T-Jump/FTIR combined technology[J]. Solid Rocket Technology, 2010, 33(6):675-679.


[6]熊 鹰,舒远杰,王新锋,等.四嗪类高氮化合物结构对热分解机理影响的理论研究[J].火炸药学报,2008,31(1):1.
[8]来蔚鹏,廉 鹏,王伯周,等.硝基芳香族化合物密度、爆速和撞击感度的量子化学及QSPR研究[J].火炸药学报,2008,31(5):28.
 WANG Guo-qing,WU Yu-kai,HOU Qing-wei,et al.A Density Functional Theory of the Reaction of TNT with Sulfate Radical[J].,2010,33(2):10.
 BAI Lin,HU Yin,HU Rong-zu,et al.Interaction between 3,6-Diamino-1,2,4,5-tetrazine-1,4-di-N-oxide and Hydrogen Fluoride by DFT[J].,2010,33(2):19.
 LAI Wei-peng,LIAN Peng,CHANG Hai-bo,et al.Theoretical Study and Prediction of Properties for  5,5′-Azoxy-bis(4-nitro-1,2,3-triazol-1-yl)-furoxan[J].,2011,34(2):15.
 YIN Dong-guang,GAO Wen-liang,ZHANG Cai-xia,et al.Theoretical Calculation of Bond Dissociation Energies for Unsymmetrical Dimethylhydrazine[J].,2011,34(2):83.
 SHANG Jing,ZHANG Jian-guo,ZHENG Hui-hui,et al.DFT of 1,1,3,3,5,5-Tris-spiro(1,5-Diamino-tetrazole)Cyclotriphosphazene[J].,2011,34(2):10.
 SI Zhen-mei,JIN Shao-hua,LI Li-jie,et al.Density Functional Theory on the Hydrolysis Mechanism of TADFIW[J].,2011,34(2):21.
 LIN Xiao-xiong,WANG Ming-liang,ZHAO Feng-qi,et al.Interaction between Nitromethane and Amino, Hydroxyl Compounds[J].,2012,35(2):1.
 ZUO Huai-yuan,KONG Lu-lu,YU Shuai,et al.Theoretical Prediction of the Heats of Formation for Nitrogen Fluorides[J].,2014,37(2):30.


更新日期/Last Update: 1900-01-01