[1]杨秀荣,张驰,高红旭,等.密度泛函理论研究NO在CuO(1 1 1)的表面吸附[J].火炸药学报,2019,42(2):125-130,190.[doi:10.14077/j.issn.1007-7812.2019.02.004]
 YANG Xiu-rong,ZHANG Chi,GAO Hong-xu,et al.Study of NO Adsorption on CuO(1 1 1) Surface by Density Functional Theory[J].,2019,42(2):125-130,190.[doi:10.14077/j.issn.1007-7812.2019.02.004]
点击复制

密度泛函理论研究NO在CuO(1 1 1)的表面吸附

参考文献/References:

[1] 张英杰, 李航舵. 纳米燃速催化剂的研究进展[J]. 兵器材料科学与工程, 2012, 35(4):112-116. ZHANG Ying-jie, LI Hang-duo. Research progress of nano-burning catalysts[J]. Ordnance Material Science and Engineering, 2012, 35(4):112-116.
[2] 王雅乐, 卫芝贤, 康丽. 固体推进剂用燃烧催化剂的研究进展[J]. 含能材料, 2015, 23(1):89-98. WANG Ya-le, WEI Zhi-xian, KANG Li. Research progress on combustion catalyst of solid propellant[J]. Chinese Journal of Energetic Materials, 2015, 23(1):89-98.
[3] 张正中, 邓重清, 屈蓓,等. 纳米材料在固体推进剂中的应用进展[J]. 化学推进剂与高分子材料, 2016, 14(6):37-44. ZHANG Zheng-zhong, DENG Chong-qing, QU Bei, et al. Application progress of nano materials in solid propellant[J]. Chemical Propellants and Polymeric Materials, 2016,14(6):37-44.
[4] 郝嘎子, 刘杰, 高寒,等. 纳米CuO的制备及其对AP热分解的催化作用[J]. 火炸药学报, 2015, 38(4):18-21. HAO Ga-zi, LIU Jie, GAO Han, et al. Preparation of nano-sized CuO and its catalytic effect on the thermal decomposition of AP[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(4):18-21.
[5] 刘健冰, 赵宁宁, 赵凤起,等. 海胆状纳米MnO2的制备及其对CL-20热分解性能的影响[J]. 火炸药学报, 2015, 38(2):19-24. LIU Jian-bing, ZHAO Ning-ning, ZHAO Feng-qi, et al. Preparation of sea urchin-like nano-MnO2 and its effect on thermal decomposition performance of CL-20[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(2):19-24.
[6] Vargeese A A, Muralidharan K, Krishnamurthy V N. Kinetics of nano titanium dioxide catalyzed thermal decomposition of ammonium nitrate and ammonium nitrate-based composite solid propellant[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2):260-266.
[7] 洪伟良, 刘剑洪, 赵凤起,等. 纳米CuO·PbO的制备及对RDX热分解的催化作用[J]. 含能材料, 2003, 11(2):76-80. HONG Wei-liang, LIU Jian-hong, ZHAO Feng-qi, et al. Preparation of nano-sized CuO·PbO and its catalysis on thermal decomposition of RDX[J]. Chinese Journal of Energetic Materials, 2003, 11(2):76-80.
[8] 刘浩. 纳米PbCO3/CuO复合粒子的制备及其催化性能的研究[D]. 南京:南京理工大学, 2017. LIU Hao. Preparation and catalytic properties of nano PbCO3/CuO composite particles[D]. Nanjing:Nanjing University of Science and Technology, 2017.
[9] 向东, 吴琼, 朱卫华. 运用从头算动力学方法研究极端条件下CL-20的分解机理[J]. 含能材料, 2018,26(1):59-65. XIANG Dong, WU Qiong, ZHU Wei-hua. Abinitio molecular dynamics studies on the decomposition mechanisms of CL-20 crystal under extreme conditions[J]. Chinese Journal of Energetic Materials, 2018,26(1):59-65.
[10] 徐哲. FOX-7和CL-20复合体系热分解机理研究[D]. 太原:中北大学, 2017. XU Zhe. Study on thermal decomposition mechanism of FOX-7 and CL-20 composite system[D]. Taiyuan:North University of China, 2017.
[11] Delley B. DMol3 DFT studies:from molecules and molecular environments to surfaces and solids[J]. Computational Materials Science, 2000, 17(2/4):0-126.
[12] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
[13] Tkatchenko A, Scheffler M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data[J]. Physical Review Letters, 2009, 102(7):0730051-0730054.
[14] Hamann D R. Generalized norm-conserving pseudopotentials[J]. Physical Review B, Condensed Matter, 1989, 40(5):2980-2987.
[15] Becke A D. A multicenter numerical integration scheme for polyatomic molecules[J]. Journal of Chemical Physics, 1988, 88(4):2547-2550.
[16] Song Z, Wang B, Yu J, et al. Density functional study on the heterogeneous oxidation of NO over α-Fe2O3 catalyst by H2O2:effect of oxygen vacancy[J]. Applied Surface Science, 2017, 413:292-301.
[17] Gao Y, Zhang L M, Kong C C, et al. NO adsorption and dissociation on palladium clusters:the importance of charged state and metal doping[J]. Chemical Physics Letters, 2016, 658:7-11.
[18] Asbrink S, Norrby L J. A refinement of the crystal structure of copper(Ⅱ) oxide with a discussion of some exceptional e.s.d.’s[J]. Acta Crystallographica, 2010, 26(1):8-15.
[19] Zhao W, Tian F H, Wang X, et al. Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface:a density functional theory study[J]. Journal of Colloid and Interface Science, 2014, 430:18-23.
[20] Hu J, Li D, Lu J G, et al. Effects on electronic properties of molecule adsorption on CuO surfaces and nanowires[J]. Journal of Physical Chemistry C, 2010, 114(40):17120-17126.
[21] Hu R M, Zhou X L. First-principles study of NO molecules adsorption on Ag-doped CuO(111) surface[J]. Computational & Theoretical Chemistry, 2017, 1122:47-52.
[22] 张禁. 乙炔选择性加氢反应中Cu催化剂表面结构、价态及金属掺杂对乙烯选择性的影响[D]. 太原:太原理工大学, 2017.ZHANG Jin. Effects of surface structure, valence and metal doping of Cu catalyst on ethylene selectivity in selective hydrogenation of acetylene[D]. Taiyuan:Taiyuan University of Technology, 2017.
[23] Sun S, Li C, Zhang D, et al. Density functional theory study of the adsorption and dissociation of O2 on CuO(111) surface[J]. Applied Surface Science, 2015, 333:229-234.
[24] Inada Y, Orita H. Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes:evidence of small basis set superposition error compared to Gaussian basis sets[J]. Journal of Computational Chemistry, 2008, 29(2):225-232.
[25] Raina Panta, Vithaya Ruangpornvisuti. Adsorption of hydrogen molecule on noble metal doped on oxygen-vacancy defect of anatase TiO2(101) surface:periodic DFT study[J]. International Journal of Hydrogen Energy, 2017, 42(30):19106-19113.
[26] 赵旭芳, 宋纪蓉, 赵凤起,等. NO在(Fe2O3)n(2 ≤ n ≤ 6)团簇上吸附的密度泛函理论研究[J]. 计算机与应用化学, 2015, 32(3):309-314. ZHAO Xu-fang, SONG Ji-rong, ZHAO Feng-qi, et al. Density functional Theory study of NO adsorption on (Fe2O3)n(2 ≤ n ≤ 6) clusters[J]. Computer and Applied Chemistry, 2015, 32(3):309-314.
[27] Omidvar A. Indium-doped and positively charged ZnO nanoclusters:versatile materials for CO detection[J]. Vacuum, 2017, 147:126-133.
[28] 王晓红, 张皋, 谢明召, 等. T-Jump/FTIR联用技术研究CL-20的热分解机理[J]. 固体火箭技术, 2010, 33(6):675-679. WANG Xiao-hong, ZHANG Gao, XIE Ming-zhao, et al. Investigation on thermal decomposition of CL-20 by T-Jump/FTIR combined technology[J]. Solid Rocket Technology, 2010, 33(6):675-679.

相似文献/References:

[1]马海霞,宋纪蓉,肖鹤鸣,等.3,4-二硝基呋咱基氧化呋咱(DNTF)的密度泛函理论研究[J].火炸药学报,2006,29(3):43.
[2]周素芹,居学海,肖鹤鸣,等.四唑与水二聚体相互作用的理论研究[J].火炸药学报,2005,28(4):1.
[3]孙小巧,范晓薇,居学海,等.丁三醇三硝酸酯与高分子黏合剂的相互作用[J].火炸药学报,2007,30(3):1.
[4]王大喜,胡国胜.甲基偶氮四唑热稳定性和热分解机理的量子化学研究[J].火炸药学报,2003,26(1):74.
[5]王大喜,肖鹤鸣.烷基硝酸酯气相水解和取代基效应的量子化学研究[J].火炸药学报,2002,25(1):67.
[6]熊 鹰,舒远杰,王新锋,等.四嗪类高氮化合物结构对热分解机理影响的理论研究[J].火炸药学报,2008,31(1):1.
[7]侯素青,曹端林,张文艳,等.氮杂杯[4]芳烃主体与RDX客体分子间相互作用的密度泛函理论[J].火炸药学报,2008,31(5):19.
[8]来蔚鹏,廉 鹏,王伯周,等.硝基芳香族化合物密度、爆速和撞击感度的量子化学及QSPR研究[J].火炸药学报,2008,31(5):28.
[9]李志敏,严英俊,冀慧莹,等.苦味酸含能离子盐的结构、生成热及爆炸性能理论研究[J].火炸药学报,2009,32(6):6.
[10]李丹,任莹辉,赵凤起,等.咪唑苦味酸盐C3N2H+5C6N3O7H-2的合成、晶体结构和量子化学[J].火炸药学报,2009,32(6):48.
[11]徐杨森,卢专,王明良,等.推进剂燃烧产物热力学性质的理论计算[J].火炸药学报,2008,31(6):65.
[12]王国青,吴玉凯,侯庆伟,等.硫酸自由基与TNT反应的密度泛函理论[J].火炸药学报,2010,33(2):10.
 WANG Guo-qing,WU Yu-kai,HOU Qing-wei,et al.A Density Functional Theory of the Reaction of TNT with Sulfate Radical[J].,2010,33(2):10.
[13]白林,胡银,胡荣祖,等.用密度泛函理论研究LAX-112与氟化氢分子间的相互作用[J].火炸药学报,2010,33(6):19.
 BAI Lin,HU Yin,HU Rong-zu,et al.Interaction between 3,6-Diamino-1,2,4,5-tetrazine-1,4-di-N-oxide and Hydrogen Fluoride by DFT[J].,2010,33(2):19.
[14]来蔚鹏,廉鹏,常海波,等.5′-氧化偶氮双(4-硝基-1,2,3三唑-1-)氧化呋咱的理论研究与性能预估[J].火炸药学报,2011,34(1):15.
 LAI Wei-peng,LIAN Peng,CHANG Hai-bo,et al.Theoretical Study and Prediction of Properties for  5,5′-Azoxy-bis(4-nitro-1,2,3-triazol-1-yl)-furoxan[J].,2011,34(2):15.
[15]尹东光,高文亮,张彩霞,等.偏二甲肼分子化学键解离能的理论计算[J].火炸药学报,2011,34(3):83.
 YIN Dong-guang,GAO Wen-liang,ZHANG Cai-xia,et al.Theoretical Calculation of Bond Dissociation Energies for Unsymmetrical Dimethylhydrazine[J].,2011,34(2):83.
[16]尚静,张建国,郑慧慧,等.1,1,3,3,5,5-三螺环-1,5-二氨基四唑-环三磷腈的密度泛函理论[J].火炸药学报,2011,34(4):10.
 SHANG Jing,ZHANG Jian-guo,ZHENG Hui-hui,et al.DFT of 1,1,3,3,5,5-Tris-spiro(1,5-Diamino-tetrazole)Cyclotriphosphazene[J].,2011,34(2):10.
[17]司振梅,金韶华,李丽洁,等.水解反应机理的密度泛函理论[J].火炸药学报,2011,34(6):21.
 SI Zhen-mei,JIN Shao-hua,LI Li-jie,et al.Density Functional Theory on the Hydrolysis Mechanism of TADFIW[J].,2011,34(2):21.
[18]林小雄,王明良,赵凤起,等.硝基甲烷与氨基及羟基化合物间的相互作用[J].火炸药学报,2012,35(4):1.
 LIN Xiao-xiong,WANG Ming-liang,ZHAO Feng-qi,et al.Interaction between Nitromethane and Amino, Hydroxyl Compounds[J].,2012,35(2):1.
[19]毕福强,樊学忠,李吉祯,等.3-硝基-4-叠氮基氧化呋咱的性能预估[J].火炸药学报,2012,35(5):9.
[20]左怀远,孔璐璐,俞帅,等.氮氟化合物生成焓的理论预测[J].火炸药学报,2014,37(4):30.
 ZUO Huai-yuan,KONG Lu-lu,YU Shuai,et al.Theoretical Prediction of the Heats of Formation for Nitrogen Fluorides[J].,2014,37(2):30.

备注/Memo

收稿日期:2018-9-14;改回日期:2019-1-3。
基金项目:国家自然科学基金(No.21673179;No.21504067;No.21373161);预研领域基金资助(No.6140656020216BQ34001)
作者简介:杨秀荣(1995-),女,硕士研究生,从事含能材料的理论计算研究。E-mail:1667312161@qq.com
通讯作者:马海霞(1974-),女,教授,博导,从事含能材料研究。E-mail:mahx@nwu.edu.cn

更新日期/Last Update: 1900-01-01


@Copyright 西安近代化学研究所(中国兵器工业第204研究所)  陕ICP备14002633号-2
地址:西安市18号信箱《火炸药学报》编辑部   联系电话:029-88291297   邮箱:hzyxb@204s.com