|本期目录/Table of Contents|

[1]陈永康,安振涛,陈明华,等.硝酸异丙酯水解反应的量子化学计算[J].火炸药学报,2018,41(5):517-522.[doi:10.14077/j.issn.1007-7812.2018.05.017]
 CHEN Yong-kang,AN Zhen-tao,CHEN Ming-hua,et al.Quantum Chemistry Calculation of Hydrolysis Reaction of Isopropyl Nitrate[J].,2018,41(5):517-522.[doi:10.14077/j.issn.1007-7812.2018.05.017]
点击复制

硝酸异丙酯水解反应的量子化学计算()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第5期
页码:
517-522
栏目:
出版日期:
2018-10-31

文章信息/Info

Title:
Quantum Chemistry Calculation of Hydrolysis Reaction of Isopropyl Nitrate
作者:
陈永康 安振涛 陈明华 张力
1. 陆军工程大学石家庄校区, 河北 石家庄 050003;
2. 特种勤务研究所, 河北 石家庄 050003
Author(s):
CHEN Yong-kang AN Zhen-tao CHEN Ming-hua ZHANG Li
1. Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China;
2. Ordnance Technology Research Institute, Shijiazhuang 050003, China
关键词:
量子化学硝酸异丙酯碱性水解溶剂化效应极化连续介质模型
Keywords:
quantum chemistryisopropyl nitratealkaline hydrolysissolvation effectpolarizable continuum model
分类号:
TJ55;O641.12+1
DOI:
10.14077/j.issn.1007-7812.2018.05.017
文献标志码:
-
摘要:
研究了硝酸异丙酯的碱性水解反应,计算并比较了4条反应路径;采用从头算MP2/6-311+g(d,p)方法和基组优化反应路径中各驻点的几何结构并计算前线轨道能和振动频率;采用极化连续介质模型研究了反应的溶剂化效应,得到标准态和溶剂化效应下的反应势能面;探讨了pH值变化对水解反应的影响;在CCSD(T)/6-311++g(3df,2p)水平下利用TST、CVT、CVT/ZCT和CVT/SCT方法计算了反应的速率常数。结果表明,在溶剂化条件下,驻点能量降低,反应焓更高;pH值的变化对反应路径顺序影响不大;过渡态能垒为82.72 kJ/mol,当能量足够越过能垒时更倾向于生成稳定的异丙醇和水。4种计算方法得到的反应速率常数相对较小,其Arrhenius表达式为:k=1.18×10-23exp(-7 357/T)。
Abstract:
The alkaline hydrolysis reaction of isopropyl nitrate was investigated and four reaction pathways were calculated and compared. The geometries of the stationary points in the reaction pathways were optimized using the ab initio MP2/6-311+g(d,p) method and base groups, and the frontier orbital energy and vibration frequencies were calculated. The solvation effect of the reaction was studied by the polarizable continuum model and the reaction potential energy curves under the standard state and the solvent effect was obtained. The influence of pH value on the reaction was discussed. The rate constants of the reaction were calculated by TST, CVT, CVT/ZCT and CVT/SCT method at the CCSD(T)/6-311++g(3df,2p) level. The results show that under the condition of solvation effect, the energy of stationary points are lower and the reaction enthalpy is higher. The change of pH value has little influence on the order of the reaction pathways. The energy barrier is 82.72 kJ/mol, the reaction tends to form stable isopropanol and water when the energy is higher than the barrier. The rate constants of the reaction by the four calculation methods are relatively small, and the Arrhenius expression is k=1.18×10-23exp(-7 357/T).

参考文献/References:

[1] 汤正新, 李小红, 张瑞州. 高能硝酸酯化合物生成晗的计算[J]. 河南科技大学学报(自然科学版), 2012, 33(3):80-85. TANG Zheng-xin, LI Xiao-hong, ZHANG Rui-zhou. Calculation of bond dissociation energies of O-N bond for some nitroester energetic materials[J]. Journal of Henan University of Science and Technology(Natural Science), 2012, 33(3):80-85.
[2] 张瑞州, 李小红. 硝酸酯含能材料中O-N键离解能的计算[J]. 河南科技大学学报(自然科学版), 2015, 36(3):96-101. ZHANG Rui-zhou, LI Xiao-hong. Calculation of heats of formation of nitroester energetic materials[J]. Journal of Henan University of Science and Technology(Natural Science), 2015, 36(3):96-101.
[3] Liu H, Wang F, Gong X D. DFT Studies on 7-nitrotetrazolo[1,5] furazano[4,5-b] pyridine 1-oxide:crystal structure, detonation properties, sensitivity and effect of hydrostatic compression[J]. Structural Chemistry, 2014, 25:239-249.
[4] Muthurajan H, Sivabalan R, Talawar M B, et al. Prediction of heat of formation and related parameters of high energy materials[J]. Journal of Hazardous Materials, 2006, 133:30-45.
[5] Du L, Zeng X Q, Ge M F, et al. Geometric and electronic structures of benzoyl nitrite and benzoyl nitrate[J]. Journal of Physical Chemistry, 2008, 878:26-31.
[6] Khrapkovskii G M, Shamsutdiov T F, Chachkov D V, et al. Energy of the O-NO2 bond dissociation and the Mechanism of the gas-phase monomolecular decomposition of aliphatic alcohol nitroesters[J]. Journal of Molecular Structure:Theochem, 2004, 686:185-192.
[7] 曾秀琳, 陈网桦, 刘家骢, 等. 硝酸异丙酯和硝酸正丙酯的密度泛函理论研究[J]. 计算机与应用化学, 2008, 25(2):201-204. ZENG Xiu-lin, CHEN Wang-hua, LIU Jia-cong, et al. Study on NPN and IPN using density functional theory[J]. Computers and Applied Chemistry, 2008, 25(2):201-204.
[8] True N S. Computational and experimental studies using absorption spectroscopy and vibrational circular dichroism[J]. Spectrochimica Acta,1983, 39:867-873.
[9] Thornton E R. A simple theory for predicting the effects of substituent changes on transition-state geometry[J]. Journal of the American Chemical Society, 1967, 89:2915-2927.
[10] 贡雪东, 张晓武, 肖鹤鸣. 硝酸异丙酯分子结构和水解机理研究[J]. 火炸药学报, 1994,17(4):18-22. GONG Xue-dong, ZHANG Xiao-wu, XIAO He-ming. The geometric structure and hydrolysis mechanism of isopropyl nitrate[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 1994,17(4):18-22.
[11] 刘志勇, 闫华, 刘海峰, 等. 一种推进剂分解机理的量子化学分析方法[J]. 火工品, 2007(2):17-22. LIU Zhi-yong, YAN Hua, LIU Hai-feng, et al. Analysis on the decomposition mechanism of a kind of propellant by quantum chemistry method[J]. Initiators & Pyrotechnics, 2007(2):17-22.
[12] 纪春亮, 李杰, 罗运军, 常见炸药分子的溶剂化效应[J]. 含能材料, 2013,21(5):616-623. JI Chun-liang, LI Jie, LUO Yun-Jun, et al. Solvation effect on conventional explosives[J]. Chinese Journal of Energetic Materials, 2013, 21(5):616-623.
[13] Ignacy C, Krishna K G. A density functional theory-and atoms in molecules-based study of NINTA and NINTPA complexes toward physical properties controlling their stability. A new method of computing a formation constant[J]. Inorganic Chemistry, 2010, 49:6931-6941.
[14] Michael B. Nicolas S. Alain C. Water versus acetonitrile coordination to uranyl, density functional study of cooperative polarization effects in solution[J]. Inorganic Chemistry, 2011, 50:299-308.
[15] Eckert F K. Fast solvent screening via quantum chemistry:COSMO-RS approach[J]. AIChE J, 2002, 48:369-385.
[16] Chen X N,Bao X G, Zhao J C, et al. Experimental and computational study of the formation mechanism of the diammoniate of diborane; the role of dhydrogen bonds[J].Journal of the American Chemical Society,2011,133:14172-14175.
[17] Wu J Y, Liu J Y, Li Z S, et al. Theoretical study and rate constant calculation forthe F+CHFO reaction[J]. Chemical Physics Letters, 2003, 369:504-512.
[18] Yang L, Liu J Y, Li Z S. Theoretical studies of the reaction of hydroxyl radical with methyl acetate[J]. Journal of Physical Chemistry, 2008, 112(28):6364-6372.
[19] YuY X, Li S M, Xu Z F, et al. An ab initio study on the reaction NH2+CH4→NH3+CH3[J]. Chemical Physics Letters, 1998, 296:131-136.

相似文献/References:

[1]孙小巧,范晓薇,居学海,等.丁三醇三硝酸酯与高分子黏合剂的相互作用[J].火炸药学报,2007,30(3):1.
[2]王大喜,胡国胜.甲基偶氮四唑热稳定性和热分解机理的量子化学研究[J].火炸药学报,2003,26(1):74.
[3]王大喜,肖鹤鸣.烷基硝酸酯气相水解和取代基效应的量子化学研究[J].火炸药学报,2002,25(1):67.
[4]侯素青,曹端林,张文艳,等.氮杂杯[4]芳烃主体与RDX客体分子间相互作用的密度泛函理论[J].火炸药学报,2008,31(5):19.
[5]来蔚鹏,廉 鹏,王伯周,等.硝基芳香族化合物密度、爆速和撞击感度的量子化学及QSPR研究[J].火炸药学报,2008,31(5):28.
[6]徐杨森,卢专,王明良,等.推进剂燃烧产物热力学性质的理论计算[J].火炸药学报,2008,31(6):65.
[7]李丹,任莹辉,赵凤起,等.咪唑苦味酸盐C3N2H+5C6N3O7H-2的合成、晶体结构和量子化学[J].火炸药学报,2009,32(6):48.
[8]王国青,吴玉凯,侯庆伟,等.硫酸自由基与TNT反应的密度泛函理论[J].火炸药学报,2010,33(2):10.
 WANG Guo-qing,WU Yu-kai,HOU Qing-wei,et al.A Density Functional Theory of the Reaction of TNT with Sulfate Radical[J].,2010,33(5):10.
[9]杜军良,舒远杰,周阳,等.用分子拓扑参数预估多硝基芳香族化合物的撞击感度[J].火炸药学报,2010,33(6):5.
 DU Jun-liang,SHUYuan-jie,HOU Yang,et al.Predication on Impact Sensitivity of PolynitroaromaticCompounds using Principal Component Regression[J].,2010,33(5):5.
[10]白林,胡银,胡荣祖,等.用密度泛函理论研究LAX-112与氟化氢分子间的相互作用[J].火炸药学报,2010,33(6):19.
 BAI Lin,HU Yin,HU Rong-zu,et al.Interaction between 3,6-Diamino-1,2,4,5-tetrazine-1,4-di-N-oxide and Hydrogen Fluoride by DFT[J].,2010,33(5):19.

备注/Memo

备注/Memo:
收稿日期:2018-03-28;改回日期:2018-04-16。
基金项目:国防科技项目基金(No.2004053)
作者简介:陈永康(1991-),男,博士研究生,从事弹药保障与安全技术工作。E-mail:sharpions@126.com
更新日期/Last Update: 1900-01-01