|本期目录/Table of Contents|

[1]乌岳,李卓,鲁荣.固体推进剂花板浇注的数值模拟与实验研究[J].火炸药学报,2018,41(5):506-511.[doi:10.14077/j.issn.1007-7812.2018.05.015]
 WU Yue,LI Zhuo,LU Rong.Numerical Simulation and Experimental Study of Flower Plate Pouring System for Solid Propellant[J].,2018,41(5):506-511.[doi:10.14077/j.issn.1007-7812.2018.05.015]
点击复制

固体推进剂花板浇注的数值模拟与实验研究()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第5期
页码:
506-511
栏目:
出版日期:
2018-10-31

文章信息/Info

Title:
Numerical Simulation and Experimental Study of Flower Plate Pouring System for Solid Propellant
作者:
乌岳 李卓 鲁荣
1. 内蒙古工业大学理学院, 内蒙古 呼和浩特 010051;
2. 中国航天科工集团 内蒙古航天红峡化工有限公司, 内蒙古 呼和浩特 010051;
3. 内蒙古工业大学化工学院, 内蒙古 呼和浩特 010051
Author(s):
WU Yue LI Zhuo LU Rong
1. College of Science, Inner Mongolia University of Technology, Hohhot 010051, China;
2. Inner Mongolia Aerospace Hongxia Chemical Co., Ltd., China Aerospace Science & Industry Corporation, Hohhot 010051, China;
3. College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
关键词:
固体推进剂药浆本构模型花板真空浇注Ansys-Polyflow软件
Keywords:
solid propellant slurryconstitutive modelflower plate vacuum pouringAnsys-Polyflow software
分类号:
TJ55;V512
DOI:
10.14077/j.issn.1007-7812.2018.05.015
文献标志码:
-
摘要:
利用Herschel-Bulkley本构模型,通过CFD黏弹性流体软件Ansys-Polyflow对固体推进剂药浆浇注工艺过程进行数值模拟,研究了真空浇注系统不同孔径条件下药浆的流动速度、挤出胀大效应、黏度、剪切速率及流平特性,并通过实验对数值模拟结果进行了验证。结果表明,花板孔径越大,药浆流速越快,7 mm孔径条件下药浆流速最大可达0.10 m/s,而3 mm孔径流速最大值只有0.02 m/s;挤出胀大比随浇注孔长径比(L/D)的减小而增大,孔径为3、5、7 mm时的挤出胀大比在同一花板厚度下依次为1.05、1.31、1.44。HTPB四组元推进剂药浆为典型的屈服假塑性流体,当剪切应力低于某极限值时体系不流动,而高于该极限值时体系呈假塑性流体,黏度随剪切速率的增大而降低;当药浆流经花板和翼片时,流体剪切速率达到最大值,药浆黏度从最初的400 Pa·s降至300 Pa·s;药浆整体的流平性较好,未出现较大的孔洞和瑕疵;燃烧室芯孔右侧的微小空洞随着流动逐渐消失,直到燃烧室充满,云图显示孔洞的体积分数在0.5以下时,基本充满。
Abstract:
The Herschel-Bulkley constitutive model was used to numerically simulate the process of solid propellant slurry pouring process through the CFD viscoelastic fluid software Ansys-Polyflow. The flow rate, extrusion swelling effect, viscosity, shear rate and leveling properties of slurry under the condition of different apertures in the vacuum pouring system were studied and the numerical simulation results were verified through experiments. Results show that:the bigger the aperture of the flower plate, the faster the flow rate of the slurry. Under the condition of 7 mm aperture, the maximum flow rate of the slurry can reach 0.10 m/s, while the maximum flow rate of 3 mm aperture is only 0.02 m/s. The extrusion swelling ratio increases with decreasing the pouring hole’s length-diameter ratio (L/D). The extrusion swelling ratio at the aperture of 3, 5 and 7 mm under the same plate thickness is 1.05,1.31 and 1.44, respectively. HTPB four-component propellant slurry is a typical pseudoplastic fluid of yield. When the shear stress is lower than a limit value, the system does not flow, while when the shear stress is higher than the limit value, the system is a pseudoplastic fluid, and the viscosity decreases with the increase of shear stress. When the slurry flows through the flower plate and the blade, the shear rate of fluid reaches the maximum, and the viscosity of the slurry drops from 400 Pa·s initially to 300 Pa·s. The overall fluidity of the slurry is good, without large holes and defects. The tiny cavity on the right side of core hole of the combustion chamber gradually disappears with the flow until the combustion chamber is full. When the volume fraction of the hole is below 0.5, the cloud map shows that the hole is basically full.

参考文献/References:

[1] Waldy M, Gabl R, Seibl J, et al. Alternative methods for the implementation of trash rack losses in the 3D-numerical calculation with FLOW-3D[J]. Österreichische Wasser-und Abfallwirtschaft, 2015, 67(1):64-69.
[2] 汪志清.定量插管浇注工艺装置[J].推进技术,1984,5(3):11-18. WANG Zhi-qing. Quantitative intubation pouring process device[J].Journal of Propulsion Technology,1984,5(3):11-18.
[3] Gao D, Morley N B, Dhir V. Numerical simulation of wavy falling film flow using VOF method[J]. Journal of Computational Physics, 2003, 192(2):624-642.
[4] 姜爱民,于胜春,邹常青.立式捏合机混合釜内推进剂药浆混合过程数值仿真[J].海军航空工程学院学报,2011,6(4):381-386. JIANG Ai-min, YU Sheng-chun, ZOU Chang-qing. Numercial simulation of the mixing of composite solid propellant slurry in a kneading mixer[J].Journal of Naval Air Engineering Institute, 2011, 26(4):381-386.
[5] Connelly Kay Robin,Jordan Valenti-James.Mixing analysis of a Newtonian fluid in a 3D planetary pin mixer[J].Chemical Engineering Research and Design,2008,86:1434-1440.
[6] Shimada T, Habu H, Seike Y, et al. X-ray Visualization measurement of slurry flow in solid propellant casting[J]. Flow Measurement & Instrumentation, 2007, 18(5):235-240.
[7] 王小英,尹欣梅,吴倩,等.温度对RDX/PET/NPBA推进剂药浆流变特性的影响[J].火炸药学报,2014,37(3):52-55. WANG Xiao-ying, YIN Xin-mei, WU Qian, et al.Effect of temperature on rheological properties of RDX/PET/NPBA slurry[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2014,37(3):52-55.
[8] 邓凯,阳建红,陈飞,等.HTPB复合固体推进剂本构方程[J].宇航学报. 2010,31(7):1815-1818. DENG Kai, YANG Jian-hong, CHEN Fei, et al. HTPB composite solid propellant constitutive equation[J].Journal of Aeronautics, 2010,31(7):1815-1818.
[9] Phan-Thien N.A nonlinear network viscoelastic model[J]. Journal of Rheology, 1987, 22:259-283.
[10] Phan-Thien N,Tanner R I.A new constitutive equation derived from network theory[J]. Journal of Fluid Mechanics,1997,2(4):353-363.
[11] 庞爱民.固体火箭推进剂理论与工程[M].北京:中国宇航出版社,2014.
[12] 苏昌银,姚谦,史旭辉,等.固体火箭发动机捆绑加压成型装药工艺研究[J].固体火箭技术,2006,29(6):432-434. SU Chang-yin,YAO Qian,SHI Xu-hui,et al.Solid rocket engine bundle research on pressure forming charge process[J].Journal of Solid Rocket Technology,2006,29(6):432-434.
[13] 肖立群,樊学忠,王晗,等.含铝固体推进剂燃烧过程中铝粉团聚现象研究进展[J].火炸药学报,2018,41(1):7-15. XIAO Li-qun,FAN Xue-zhong,WANG Han, et al.Research progress on the agglomeration phenomenon of aluminum powder in the combustion of aluminized solid propellants[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao),2018,41(1):7-15.
[14] 李勇.黏弹性聚合物熔体流动和挤出胀大的数值模拟研究[D].上海:华东理工大学,2012. LI Yong. Numercial simulations of flow and extrudate swell for viscoelastic polymer melt[D].Shanghai:East China University of Science and Technology,2012.
[15] 韩先洪.成型填充过程中非等温非牛顿黏弹性流动数值模拟[D].大连:大连理工大学,2007. HAN Xian-hong. Nonisothermal non-Newtonian viscoelastic flow simulation of filling process[D].Dalian:Dalian University of Technology,2007.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-03-12;改回日期:2018-05-29。
基金项目:中国航天科工集团第六研究院院管课题(GK201812);内蒙古工业大学科学研究项目(No.X201718)
作者简介:乌岳(1986-),女,博士研究生,讲师,从事固体推进剂研究。E-mail:569704028@qq.com
更新日期/Last Update: 1900-01-01