|本期目录/Table of Contents|

[1]刘瑞鹏,贾宪振,王永顺.炸药切削温度理论分析及影响因素的数值模拟[J].火炸药学报,2018,41(5):484-488,522.[doi:10.14077/j.issn.1007-7812.2018.05.011]
 LIU Rui-peng,JIA Xian-zhen,WANG Yong-shun.Theoretical Analysis and Numerical Simulation on Influence Factors of Cutting Temperature of Explosive Charge[J].,2018,41(5):484-488,522.[doi:10.14077/j.issn.1007-7812.2018.05.011]
点击复制

炸药切削温度理论分析及影响因素的数值模拟()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第5期
页码:
484-488,522
栏目:
出版日期:
2018-10-31

文章信息/Info

Title:
Theoretical Analysis and Numerical Simulation on Influence Factors of Cutting Temperature of Explosive Charge
作者:
刘瑞鹏 贾宪振 王永顺
西安近代化学研究所, 陕西 西安 710065
Author(s):
LIU Rui-peng JIA Xian-zhen WANG Yong-shun
Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
关键词:
炸药切削切削温度热固耦合算法屈服强度塑性变形理论
Keywords:
explosive cuttingcutting temperaturethermal-solid coupling arithmeticyield strengthplastic deformation theory
分类号:
TJ55;O344
DOI:
10.14077/j.issn.1007-7812.2018.05.011
文献标志码:
-
摘要:
为了研究炸药切削温度的变化规律,首先基于塑性变形理论推导了炸药切削温度的理论表达式,再采用LS-DYNA软件建立了炸药切削过程的二维热固耦合计算模型,并对不同炸药屈服强度、切削深度及进给量等工艺条件下的炸药切削温度进行了模拟计算。结果表明,炸药切削温度的模拟计算结果与理论分析结果吻合,相对误差小于10%;炸药切削温度随炸药屈服强度的增大而升高,屈服强度为25 MPa时炸药切削温度的模拟计算值为29℃,比屈服强度为5 MPa时高6℃;进给量为0.5 m/s时,切削深度为1 mm的炸药切削温度(25.4℃)比切削深度为5 mm时高0.4℃,表明切削深度对炸药切削温度影响较小;炸药切削温度随进给量的增加而增加,进给量为2 m/s时的炸药切削温度(28.8℃)比进给量为0.5 m/s时升高约3.8℃。
Abstract:
To study the change rules of the cutting temperature of explosive charge during cutting process, the theoretical formula of cutting temperature of explosive charge was deduced based on the plastic deformation theory, and a calculation model considered two-dimensional thermal-solid coupling mechanism in the cutting process of explosive charge was built by LS-DYNA software and the cutting temperature of explosive charge under different process conditions, such as yield strength, cutting depth and feeding rate was simulated and calculated. Results show that the simulated calculation results of cutting temperature of explosive charge are consistent with theoretical analysis ones and the relative error between them is less than 10%. The cutting temperature of explosive charge increases with the increase of yield strength. And the cutting temperature of explosive charge when the yield strength is 25 MPa is 29℃,6℃ higher than that when the yield strength is 5 MPa. Under the feeding rate of 0.5 m/s,the cutting temperature of explosive charge when the cutting depth is 5mm is 0.4℃ higher than that when the cutting depth is 1mm. The cutting depth has little influence on the cutting temperature of explosive charge. The cutting temperature increases with the increasing of the feeding rates. When the feeding rate is 2.0 m/s,the cutting temperature of explosive charge is about 3.8℃ higher than that when feeding rate is 0.5 m/s.

参考文献/References:

[1] 张丘, 黄交虎. 炸药切削数值模拟研究[J]. 含能材料, 2009, 17(5):583-587. ZHANG Qiu, HUANG Jiao-hu. Numerical simulation of explosive machining[J]. Chinese Journal of Energetic Materials, 2009, 17(5):583-587.
[2] 何铁宁, 成伟, 康宗礼. 炸药切削过程中切削力的数值模拟方法研究[J]. 火工品, 2005(3):22-25. HE Tie-ning, CHENG Wei, KANG Zong-li. The research of cutting force simulation in the course of explosive cutting[J]. Initiators and Pyrotechnics, 2005(3):22-25.
[3] 吴琼, 张以都, 张洪伟, 等. 不同条件下的正交切削温度场的数值分析[J]. 机械强度, 2009, 31(6):947-951. WU Qiong, ZHANG Yi-du, ZHANG Hong-wei, et al. Numerical analysis for temperature field of orthogonal cutting under different conditions[J].Journal of Mechanical Strength, 2009, 31(6):947-951.
[4] 范晶晶, 汪木兰, 左健民, 等. 高速切削温度的二维热传导模型建立及求解[J]. 机械设计与制造, 2014(1):84-87. FAN Jing-jing, WANG Mu-lan, ZUO Jian-min, et al. 2D heat conduction model of high speed cutting temperature and its solution[J]. Machinery Design and Manufacture, 2014(1):84-87.
[5] 汪木兰, 左健民, 朱昊, 等. 高速切削温度场的三维有限元建模与动态模拟[J]. 现代制造工程, 2010(2):80-84. WANG Mu-lan, ZUO Jian-min, ZHU Hao, et al. Modeling and dynamic simulation of high speed cutting temperature field based on 3D finite element analysis[J]. Modern Manufacturing Engineering, 2010(2):80-84.
[6] 康征, 季霞, 张雪萍, 等. 干切削温度场的数学物理建模与预测验证[J]. 机械设计与研究, 2011, 27(3):94-97. KANG Zheng, JI Xia, ZHANG Xue-ping, et al. Theoretical prediction and validation on cutting temperature distribution for dry cutting[J]. Machine Design and Research, 2011, 27(3):94-97.
[7] LIU De-fu, YU Xiao-xia, LOU Ping-yi. Finite element analysis of the temperature distribution in orthogonal metal machining[J]. Journal of Beijing Institute of Technology, 1999,8(4):386-391.
[8] 陈日曜. 金属切削原理[M]. 北京:机械工业出版社, 1984.
[9] 冯元桢. 连续介质力学[M]. 第三版.重庆:重庆大学出版社, 1997.
[10] 薛守义. 弹塑性力学[M]. 北京:中国建材工业出版社, 2005.
[11] LS-DYNA Theory Manual[M]. Livermore:Livermore Software Technology Corporation, 2006.
[12] 李亮亮, 屈可朋, 沈飞, 等. 摩擦效应对某PBX炸药动态力学性能的影响[J]. 火炸药学报, 2016, 39(6):69-73. LI Liang-liang, QU Ke-peng, SHEN Fei, et al. Effect of friction effect on dynamic mechanical performance of a PBX explosive[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2016, 39(6):69-73.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-01-23;改回日期:2018-05-03。
基金项目:国防科工局国防基础科研项目(No.A0920132023)
作者简介:刘瑞鹏(1987-),男,硕士,从事炸药工艺模拟研究工作。E-mail:847895022@qq.com
更新日期/Last Update: 1900-01-01