|本期目录/Table of Contents|

[1]洪晓文,李伟兵,程伟,等.复合装药爆炸载荷下砌体墙破坏过程及动态响应[J].火炸药学报,2018,41(5):471-478.[doi:10.14077/j.issn.1007-7812.2018.05.009]
 HONG Xiao-wen,LI Wei-bing,CHENG Wei,et al.Failure Process and Dynamic Response of Masonry Wall under Blast Loading of Composite Charge[J].,2018,41(5):471-478.[doi:10.14077/j.issn.1007-7812.2018.05.009]
点击复制

复合装药爆炸载荷下砌体墙破坏过程及动态响应()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第5期
页码:
471-478
栏目:
出版日期:
2018-10-31

文章信息/Info

Title:
Failure Process and Dynamic Response of Masonry Wall under Blast Loading of Composite Charge
作者:
洪晓文 李伟兵 程伟 王晓鸣 李文彬 李军宝
1. 南京理工大学智能弹药技术国防重点实验室, 江苏 南京 210094;
2. 重庆红宇精密工业有限责任公司, 重庆 402760
Author(s):
HONG Xiao-wen LI Wei-bing CHENG Wei WANG Xiao-ming LI Wen-bin LI Jun-bao
1. Ministerial Key Laboratory of ZNDY, Nanjing University of Science and Technology, Nanjing 210094, China;
2. Chongqing Hongyu Precision Industrial Co., Ltd., Chongqing 402760, China
关键词:
复合装药砌体墙爆炸载荷动态响应当量可调
Keywords:
composite chargemasonry wallblast loadingdynamic responseequivalent adjustment
分类号:
TJ55;O38
DOI:
10.14077/j.issn.1007-7812.2018.05.009
文献标志码:
-
摘要:
为了研究砌体墙在复合装药爆炸载荷下的破坏规律及动态响应,采用AUTODYN软件对其进行了数值计算,分析了复合装药冲击波传播及砌体墙的破坏过程,得到了0.5 m距离内砌体墙表面载荷分布规律、砖块飞散速度规律及鼓包位移变化规律;比较了不同隔爆材料对砖块抛射速度的影响,计算了不同隔爆材料的临界观测位置高度。结果表明,冲击波压力峰值、比冲量值均随砌体墙高度的增加而减小且趋于均匀分布,单一装药条件下的压力峰值衰减幅度大于复合装药条件;JH2(8701)装药、含铝炸药、中心单点起爆及内外同时起爆爆炸加载方式下的临界观测位置高度分别为0.77、0.97、0.58和0.72 m,有效实现了隔爆材料为聚氨酯的复合装药毁伤当量可调。钢和有机玻璃对抛射速度衰减幅度较大,铝和聚氨酯较低,橡胶材料介于两者之间。
Abstract:
To study the failure regularity and dynamic response of masonry wall under the blast loading of composite charge, the numerical calculation was carried out by the AUTODYN software, the shock wave propagation of composite charge and the failure process of masonry wall were analyzed, the load distribution law of the masonry wall, the law of the flying velocity of the bricks and the displacement change of the drums at 0.5 m distance were obtained. The effects of different flameproof materials on the ejecting velocity of bricks are compared. The critical observation height of different flameproof materials is calculated. The results show that the pressure peak value of the shock wave and the specific impulse values decrease with the increase of masonry wall height and tend to be uniform distribution, and the attenuation of pressure peak value under the single charge condition is larger than that of the composite charge. The critical observation site height under loading of 8701 charge, aluminized explosive, central single point initiation and the internal and external simultaneous initiation is 0.77, 0.97, 0.58 m and 0.72 m, respectively, which can effectively realize the adjustment of damage equivalent of the composite charge with the flameproof material as polyurethane. Steel and lucite have a larger attenuation rate of the ejecting velocity, aluminum and polyurethane are lower, and the rubber is between them.

参考文献/References:

[1] 臧晓京, 蒋琪. 威力可调的常规战斗部[J]. 飞航导弹,2011(4):90-97. ZANG Xiao-jing, JIANG Qi. Conventional combat department with adjustable power[J]. Winged Missiles Journal,2011(4):90-97.
[2] Colclough M E. A novel tuneable effects explosive charge[C]//NDIA IM&EM Symposium. Las Vegas, NV:Nation Defense Industrial Association,2012.
[3] Vittoria M,Burgess W.Sympathetic detonation testing of a dual explosive warhead concept for large diameter warheads[C]//Insensitive Munitions Technology Symposium. Williamsburg:NSWC,1994.
[4] Nouguez B.Dual formulation warheads:a mature technology[C]//Processing of Insensitive Munitions Technology Symposium.Williamsburg:NSWC,1996.
[5] Spencer A F, Corley J D. Blast and fragmentation enhancing explosive:US,5996501[P].1999.
[6] Reynolds M, Huntington-Thresher W. Development of tuneable effects warheads[J]. Defense Technology, 2016, 12(3):255-262.
[7] Graswald M, Rottenkolber E. Experimental and numerical modeling progress on flexible warhead technologies providing scalable damage area footprints[J]. Ballistics Freiburg, 2013, 10(4):22-26.
[8] Chipley M, Kaminskas M, Lyon W. Reference manual to mitigate potential terrorist attacks against buildings[R].Washington D C:Federal Emergency Management Agency, 2003:28-31.
[9] Li Zhan, Chen Li, Fang Qin, et al. Experimental and numerical study of unreinforced clay brick masonry walls subjected to vented gas explosions[J]. International Journal of Impact Engineering, 2017, 10(4):101-126.
[10] Sunshine D, Amini A, Swanson M. Overview of simplified methods and research for blast analysis[J].Structures, 2004(5):1-11.
[11] Davidson J, Porter J, Dinan R,et al. Explosive testing of polymer retrofit Masonry walls[J].Journal of Performance of Constructed Facilities,2004, 18(2):100-106.
[12] Davidson James, Fisher Jeff, Hammons M,et al. Failure mechanisms of polymer reinforced concrete masonry walls subjected to blast[J].Journal of Structural Engineering,2005, 131(8):1194-1205.
[13] Baylot J, Bullock B, Slawson T,et al. Blast response of lightly attached concrete masonry unit walls[J].Journal of Structural Engineering,2005, 131(8):1186-1193.
[14] Cheng Li-juan, Mccomb A. Unreinforced concrete masonry walls strengthened with CFRP sheets and strips under pendulum impact[J].Journal of Composites for Construction, 2010, 14(6):775-783.
[15] Zhou Xiao-qing, Hao Hong, Deeks A. Numerical modeling of response and damage of masonry walls to blast loading[J].Transactions of Tianjin University,2006,12:132-137.
[16] 张彦春,王仲琪,尤祖明,等.爆炸载荷下砌体墙破坏过程模拟研究[J].北京理工大学学报,2010,30(10):1139-1142. ZHANG Yan-chun, WANG Zhong-qi, YOU Zu-ming, et al. Numerical analysis of damage to brick walls subjected to blast loading[J].Journal of Beijing Institute of Technology,2010, 30(10):1139-1142.
[17] 郭玉荣, 张楠. 近距离爆炸载荷作用下砌体墙动态响应及破坏过程的数值模拟[J]. 湖南大学学报, 2016, 43(1):61-67. GUO Yu-rong, ZHANG Nan. Numerical simulation of masonry wall dynamic response and failure process under close range blast load[J]. Journal of Hunan University, 2016, 43(1):61-67.
[18] 刘建青,顾文彬,徐浩铭,等.多点起爆装药结构参数对尾翼EFP成型的影响[J].含能材料,2014,22(5):594-599. LIU Jian-qing, GU Wen-bin, XU Hao-ming, et al. Effects of multi-point initiation charge configuration parameters on EFP with fins formation[J]. Chinese Journal of Energetic Materials,2014,22(5):594-599.
[19] 韩早.温压炸药能量参数计算与释能规律研究[D].南京:南京理工大学,2015. HAN Zao. The calculation of thermal parameters and the characterization of energy release in thermobaric explosions[D].Nanjing:Nanjing University of Science and Technology,2015.
[20] 黄正祥, 祖旭东. 终点效应[M]. 北京:科学出版社, 2014:32-33.
[21] 李鑫,吴桂英,贾昊凯.挡墙对爆炸冲击波传播影响的数值模拟[J].工程力学,2012,29(2):245-250. LI Xin, WU Gui-ying, JIA Hao-kai. The numerical simulation of explosion shock wave propagation subject to the retaining wall[J]. Engineering Mechanics, 2012, 29(2):245-250.
[22] 侯俊亮,蒋建伟,门建兵,等.不同形状装药爆炸冲击波场及对靶板作用效应的数值模拟[J]. 北京理工大学学报,2013,33(6):556-561. HOU Jun-liang, JIANG Jian-wei, MEN Jian-bing. et al. Numerical simulation on blast wave field and deformation of thin plate under different-shape charge loading[J].Journal of Beijing Institute of Technology,2013, 33(6):556-561.
[23] Anon. AUTODYN Theory Manual[M].Revision 4.1.California:Century Dynamics,2001.

相似文献/References:

[1]丁刚,袁宝慧.复合装药偏心起爆的爆轰波特性[J].火炸药学报,2009,32(1):79.
 DING Gang,YUAN Bao hui.Detonation Wave Characteristics of Dual Explosive under Asymmetrical Initiation[J].,2009,32(5):79.
[2]周涛,程淑杰,王辉,等.DNTF基含铝炸药复合装药的驱动特性[J].火炸药学报,2015,38(5):46.[doi:10.14077/j.issn.10077812.2015.05.009]
 ZHOU Tao,CHENG Shu-jie,WANG Hui,et al.Research on Driving Characteristic for Compound Charge of DNTF-based Aluminized Explosive[J].,2015,38(5):46.[doi:10.14077/j.issn.10077812.2015.05.009]

备注/Memo

备注/Memo:
收稿日期:2018-03-01;改回日期:2018-04-23。
基金项目:国家自然科学基金(No.11202103)
作者简介:洪晓文(1991-),男,博士研究生,从事爆炸力学方向研究。E-mail:hongycxw@163.com
通讯作者:李伟兵(1982-),男,副教授,博导,从事爆炸力学及高效毁伤技术研究。E-mail:njustlwb@163.com
更新日期/Last Update: 1900-01-01