|本期目录/Table of Contents|

[1]丁可伟,李陶琦,许洪光,等.高氮含量锂氮团簇的生成与检测[J].火炸药学报,2018,41(5):447-450.[doi:10.14077/j.issn.1007-7812.2018.05.004]
 DING Ke-wei,LI Tao-qi,XU Hong-guang,et al.Formation and Detection of Lithium-nitrogen Clusters with High Nitrogen Content[J].,2018,41(5):447-450.[doi:10.14077/j.issn.1007-7812.2018.05.004]
点击复制

高氮含量锂氮团簇的生成与检测()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第5期
页码:
447-450
栏目:
出版日期:
2018-10-31

文章信息/Info

Title:
Formation and Detection of Lithium-nitrogen Clusters with High Nitrogen Content
作者:
丁可伟 李陶琦 许洪光 苏海鹏 刘影 郑卫军 葛忠学
1. 西安近代化学研究所, 陕西 西安 710065;
2. 氟氮化工资源高效开发与利用国家重点实验室, 陕西 西安 710065;
3. 中国科学院化学研究所, 北京分子科学国家实验室, 北京 100190
Author(s):
DING Ke-wei LI Tao-qi XU Hong-guang SU Hai-peng LIU Ying ZHENG Wei-jun GE Zhong-xue
1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
2. State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an 710065, China;
3. Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
关键词:
锂氮团簇氮簇材料激光溅射飞行时间质谱LiN8LiN10
Keywords:
Li-N clusternitrogen cluster materialslaser ablationTOF-MSLiN8LiN10
分类号:
TJ55;O62
DOI:
10.14077/j.issn.1007-7812.2018.05.004
文献标志码:
-
摘要:
为发现高氮含量锂氮团簇并分析影响其形成的因素,以氮气为载气,用纳秒激光分别溅射作为底物的LiF以及LiF与ZrN、BN、AlN的混合物,并用自制的反射式飞行时间质谱研究了生成的氮团簇。结果表明,用激光溅射LiF底物,生成了锂氮簇LiNn+n=2、4、6、8);用激光溅射LiF/ZrN、LiF/BN和LiF/AlN底物,生成了锂氮簇LiNn+n=2、4、6、8、10);载气参与了锂氮团簇的形成反应,且向底物中引入固态氮源物质有助于高氮含量锂氮簇的形成;实验中发现的该系列锂氮簇都含有偶数个氮原子,且依次相差两个氮原子,其中LiN8+的相对丰度最高,LiN10+的含氮质量分数高达95.2%,有望从高氮含量的锂氮团簇中发现具有高能量密度的亚稳态团簇材料或其前体材料。
Abstract:
To find the Li-N clusters with high-nitrogen content and analyze the factors affecting their formation, N2 was used as carrier gas and nanosecond laser was used to sputter LiF and the mixture of LiF with ZrN, BN and AlN as substrate, respectively. The generated nitrogen clusters were studied by the self-made reflected time-of-flight mass spectrometry (TOF-MS). Results show that LiNn+(n=2, 4, 6, 8) clusters were generated by laser sputtering LiF as substrate, while LiNn+(n=2, 4, 6, 8, 10) clusters were generated by laser sputtering LiF/ZrN, LiF/BN and LiF/AlN as substrate. Carrier gas participates in the formation reaction of the Li-N clusters, and introduction of solid nitrogen source into the substrate is helpful for the formation of Li-N clusters with high-nitrogen content. The series of LiNn+ clusters found in the experiment all contain an even number of nitrogen atoms, which are successively different from two nitrogen atoms, among which LiN8+ has the highest relative abundance and the nitrogen content of LiN10+ in mass fraction is up to 95.2%. It is expected to find the metastable cluster materials or their precursor materials with high energy density from the Li-N clusters with high-nitrogen content.

参考文献/References:

[1] Zarko V E. Searching for ways to create energetic materials based on polynitrogen compounds[J]. Combustion Explosion and Shock Waves, 2010, 46:121-131.
[2] Samartzis P C, Wodtke A M. All-nitrogen chemistry:how far are we from N60[J]. International Reviews in Physical Chemistry, 2006, 25:527-552.
[3] Östmark H. High energy density materials (HEDM):overview, theory and synthetic efforts at FOI[J]. New Trends in Research of Energetic Materials Czech Republic, 2006:231-250.
[4] Straka M, Pyykko P. One metal and forty nitrogens. Ab initio predictions for possible new high-energy pentazolides[J]. Inorganic Chemistry, 2003, 42:8241-8249.
[5] Jin L, Ding Y H.[N3MN5]q:A type of low-lying sandwich-like isomer on[N8M]q hypersurface with (M, q) (Ni, 0), (Co,-1), and (Fe,-2)[J]. The Journal of Physical Chemistry A, 2009, 113:13645-13650.
[6] Li Q S, Cheng L P. Aromaticity of square planar N42- in the M2N4 (M=Li, Na, K, Rb, or Cs) species[J]. The Journal of Physical Chemistry A, 2003, 107:2882-2889.
[7] Cheng L P, Li Q S. N4 ring as a square planar ligand in novel MN4 species[J]. The Journal of Physical Chemistry A, 2005, 109:3182-3186.
[8] Mercero J M, Matxain J M, Ugalde J M. Mono-and multidecker sandwich-like complexes of the tetraazacyclobutadiene aromatic ring[J]. Angewandte Chemie International Edition, 2004, 43:5485-5488.
[9] Lein M, Frunzke J, Timoshkin A, et al. Iron bispentazole Fe(η5-N5)2, a theoretically predicted high-energy compound:structure, bonding analysis, metal-ligand bond strength and a comparison with the isoelectronic ferrocene[J]. Chemistry-A European Journal, 2001, 7:4155-4163.
[10] Choi C, Yoo H W, Goh E M, et al. Ti(N5)4 as a potential nitrogen-rich stable high-energy density material[J]. The Journal of Physical Chemistry A, 2016, 120:4249-4255.
[11] Duan H X, Li Q S. A series of novel aromatic compounds with a planar N6 ring[J]. Chemical Physics Letters, 2006, 432:331-335.
[12] Gagliardi L, Pyykkö P. Scandium cycloheptanitride, ScN7:a predicted high-energy molecule containing an[η7-N7]3- ligand[J]. Journal of the American Chemical Society, 2001, 123:9700-9701.
[13] 丁可伟,李陶琦,葛忠学,等. 多叠氮化合物的合成研究进展[J]. 含能材料,2013,21(1):116-120. DING Ke-wei, LI Tao-qi, GE Zhong-xue, et al. Review on synthesis of polyazides[J]. Chinese Journal of Energetic Materials, 2013,21(1):116-120.
[14] 葛忠学,丁可伟,李陶琦. 多叠氮化合物[J].化学世界,2012,53:695-700. GE Zhong-xue, DING Ke-wei, LI Tao-qi. Polyazides[J].Chemical World, 2012,53:695-700.
[15] Pillai E D, Jaeger T D, Duncan M A. IR spectroscopy of Nb+(N2)n complexes:coordination, structures, and spin states[J]. Journal of the American Chemical Society, 2007, 129:2297-2307.
[16] Pillai E D, Jaeger T D, Duncan M A. IR spectroscopy and density functional theory of small V+(N2)n complexes[J]. The Journal of Physical Chemistry A, 2005, 109:3521-3526.
[17] Brathwaite A D, Abbott-Lyon H L, Duncan M A. Distinctive coordination of CO vs N2 to rhodium cations:an infrared and computational study[J]. The Journal of Physical Chemistry A, 2016, 120:7659-7670.
[18] Zhou M, Jin X, Gong Y, et al. Remarkable dinitrogen activation and cleavage by the Gd dimer:from dinitrogen complexes to ring and cage nitrides[J]. Angewandte Chemie International Edition, 2007, 119:2969-2972.
[19] Ding K W, Li X W, Xu H G, et al. Experimental observation of TiN12+ cluster and theoretical investigation of its stable and metastable isomers[J]. Chemical Science, 2015, 6:4723-4729.
[20] Ding K W, Xu H G, Yang Y, et al. Mass spectrometry and theoretical investigation of VNn+(n=8, 9, 10) clusters[J]. The Journal of Physical Chemistry A, 2018, 122:4687-4695.
[21] Glukhovtsev M N, Schleyer P R, Maerker C. Pentaaza-and pentaphosphacyclopentadienide anions and their lithium and sodium derivatives:structures and stabilities[J]. The Journal of Physical Chemistry, 1993, 97:8200-8206.
[22] 李陶琦,许洪光,郝晓春,等. N4+的生成与检测[J]. 化学通报,2012,75(3):276-278. LI Tao-qi, XU Hong-guang, HAO Xiao-chun, et al. Formation and detection of N4+[J]. Chemistry, 2012,75(3):276-278.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2018-01-29;改回日期:2018-05-13。
基金项目:国家自然科学基金(No.21502148)
作者简介:丁可伟(1984-),男,博士,副研究员,从事多氮含能材料制备研究。E-mail:dkw204@163.com
通讯作者:葛忠学(1967-),男,博士,研究员,从事含能材料的合成及工艺研究。E-mail:gzx204@sina.com
更新日期/Last Update: 1900-01-01