|本期目录/Table of Contents|

[1]Lemi Türker.Endohedrally Helium-doped CL-20: A DFT Treatment[J].火炸药学报,2018,41(5):434-440.[doi:10.14077/j.issn.1007-7812.2018.05.002]
 Lemi Türker.Endohedrally Helium-doped CL-20: A DFT Treatment[J].,2018,41(5):434-440.[doi:10.14077/j.issn.1007-7812.2018.05.002]
点击复制

Endohedrally Helium-doped CL-20: A DFT Treatment()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第5期
页码:
434-440
栏目:
出版日期:
2018-10-31

文章信息/Info

Title:
Endohedrally Helium-doped CL-20: A DFT Treatment
作者:
Lemi Türker
Department of Chemistry Üniversiteler, Middle East Technical University, Ankara Turkey 062310
Author(s):
Lemi Türker
Department of Chemistry Üniversiteler, Middle East Technical University, Ankara Turkey 062310
关键词:
CL-20explosivesHeliumEndohedral dopingdensity functional
Keywords:
CL-20explosivesHeliumEndohedral dopingdensity functional
分类号:
TJ55;O65
DOI:
10.14077/j.issn.1007-7812.2018.05.002
文献标志码:
-
摘要:
In order to investigate whether endohedral He-doping is possible or not in CL-20, a density functional treatment has been carried out at the levels of B3LYP/6-31++G(d,p) and B3PW91/6-31++G(d,p). Some physicochemical and quantum chemical properties of the helium-doped CL-20 (He@CL-20) are compared with the respective values of the parent explosive CL-20. The helium doping caused swelling of CL-20 cage but no bond rupture occurred. Doped helium acquired some positive charge.
Abstract:
In order to investigate whether endohedral He-doping is possible or not in CL-20, a density functional treatment has been carried out at the levels of B3LYP/6-31++G(d,p) and B3PW91/6-31++G(d,p). Some physicochemical and quantum chemical properties of the helium-doped CL-20 (He@CL-20) are compared with the respective values of the parent explosive CL-20. The helium doping caused swelling of CL-20 cage but no bond rupture occurred. Doped helium acquired some positive charge.

参考文献/References:

[1]Nielsen A T, Caged polynitramine compound:US, 5693794[P]. 1988-09-30.
[2] Nielsen A T, Chafin A P, Christian S L, et al. Synthesis of polyazapolycyclic caged polynitramines[J]. Tetrahedron, 1998, 54:11793-11812.
[3] Politzer P, Murray J S. Energetic Materials, part 1, Decomposition, Crystal and Molecular Properties[M]. Amsterdam:Elsevier, 2003.
[4] Foltz M, Coon C L, Garcia F, et al. The thermal stability of polymorphs of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtizane[J]. Propellants, Explosives, Pyrotechnics, 1994,19:19-25.
[5] Jiang X, Guo X, Ren H, et al. Preparation and characterization of desensitized ε-HNIW in solvent-antisolvent recrystallizations[J]. CEJEM, 2012, 9 (3):219-236.
[6] Doyle R J, Jr. The gas-phase dissociation of a new polyazapolycylic nitramine:Hexanitrohexazaisowurtzitane[J]. Org Mass Spctroscopy, 1991, 26:723-726.
[7] Patil D G, Brill T B. Thermal decomposition of energetic materials 53, Kinetics and mechanism of thermolysis of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtizane[J]. Combustion & Flame, 1991, 87:145-151.
[8] Tian Q, Yan G, Sun G, et al. Thermally induced damage in 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtizane[J]. CEJEM, 2013,10(3):359-369.
[9] Zeman S, Yan Q L, Vlacek M. Recent advances in the study of the initiation of energetic materials using characteristics of their thermal decomposition, Part I. Cyclic nitramines[J]. CEJEM, 2014, 11(2):173-189.
[10] Pelikan V, Zeman S, Yan Q L, et al. Concerning the shock sensitivity of cyclic nitramines incorporated into a polyisobutylene matrix[J]. CEJEM, 2014, 11(2):219-235.
[11] Trifonov D N, Trifonov V D. Chemical Elements[M]. Moscow:Mir, 1989.
[12] Zhang Q, Chen M, Zhou M, et al. Experimental and theoretical studies of the infrared spectra and bonding properties of NgBeCO3 and a comparison with NgBeO (Ng=He, Ne, Ar, Kr, Xe)[J]. The Journal of Physical Chemistry A, 2015,119 (11):2543-2552.
[13] Semel F J, Lados D A. Porosity analysis of PM materials by helium pycnometry[J]. Journal of Powder Metallurgy,2006,49(2):173-182.
[14] Ghosh M, Venkatesan V, Sikder A K, et al. Preparation and characterisation of ε-CL-20 by solvent evaporation and precipitation methods[J]. Defence Science Journal,2012,62(6):390-398.
[15] Durant P J, Durant B. Introduction to Advanced Inorganic Chemistry[M]. London:Longman,1970.
[16] Saunders M, Jimenez-Vazquez H A, Cross R J, et al. Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure[J]. Journal of American Chemical Society, 1994,116(5):2193-2194.
[17] Mauracher A, Daxner M, Huber S E, et al. The interaction of He- with fullerenes[J]. The Journal of Chemical Physics, 2015,142(10):104306.
[18] Yang Z, Pavlov J, Attygalle A B. Quantification and remote detection of nitro explosives by helium plasma ionization mass spectrometry (HePI-MS) on a modified atmospheric pressure source designed for electrospray ionization[J]. Journal of Mass Spectroscopy, 2012, 47 (7):845-852.
[19] Mulet-Gas M, Abella L, Cerón M R, et al, Transformation of doped graphite intocluster-encapsulated fullerene cages[J]. Nature Communications, 2017, 8:1222.
[20] Ying Z C, Hettich R L, Compton R N, et al. Synthesis of nitrogen-doped fullerenes by laser ablation[J]. Journal of Physics B:Atomic, Molecular and Optical Physics, 1996, 29(21):4935-4942.
[21] Minezaki H, Uchida T, Tanaka K, et al. Synthesis of endohedral fullerene using ECR ion source[C]//AIP Conference Proceedings.[S.l.]:AIP,2011, 1321:480.
[22] Liu G, Wu Y, Porfyrakis K. Synthesis and chemistry of endohedral fullerenes[J]. Current Organic Chemistry, 2011,15 (8):1197-1207.
[23] Popov A A, Yang S, Dunsch L. Endohedral fullerenes[J]. Chemical Reviews, 2013, 113 (8):5989-6113.
[24] Slanina Z, Uhlik F, Lee S L, et al. Lix@C60:Calculations of the encapsulation energetics and thermodynamics[J]. International Journal of Molecular Sciences, 2008, 9:1841-1850.
[25] Krause M, Kuzmany H, Georgi P, Dunsch L, Vietze K, Seifert G. Structure and stability of endohedral fullerene Sc3N@C80:Sc3N@C80:A Raman, infrared, and theoretical analysis[J]. The Journal of Chemical Physics, 2001, 115 (14):6596-659010.
[26] AlZahrani A Z. Cerium-doped endohedral fullerene:A density-functional theory study[J]. ISRN Condensed Matter Physics, 2012(2012):1-8.
[27] Stewart J J P. Optimization of parameters for semiempirical methods I. Method[J]. Journal of Compututer Chemistry, 1989,10:209-220.
[28] Stewart J J P. Optimization of parameters for semi empirical methods Ⅱ. Application[J]. Journal of Compututer Chemistry, 1989,10:221-264.
[29] Leach A R. Molecular Modeling[M]. Essex:Longman, 1997.
[30] Fletcher P. Practical Methods of Optimization[M]. New York:Wiley, 1990.
[31] Kohn W, Sham L. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140:1133-1138.
[32] Parr R G, Yang W. Density Functional Theory of Atoms and Molecules[M]. London:Oxford University Press, 1989.
[33] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38:3098-3100.
[34] Vosko S H, Vilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis[J]. Canada Journal of Physics, 1980, 58:1200-1211.
[35] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37:785-789.
[36] SPARTAN 06[M].Irvine CA:Wavefunction Inc,2006.
[37]Fleming I. Frontier Orbitals and Organic Reactions[M]. New York:Wiley, 1976.
[38] Streitwieser A Jr. Molecular Orbital Theory for Organic Chemists[M]. New York:Wiley, 1961.

相似文献/References:

[1]马海霞,宋纪蓉,胡荣祖,等.HMX,CL-20和DNTF自由基的光照检测[J].火炸药学报,2007,30(2):33.
[2]张斌,罗运军,谭惠民.多种键合剂与CL-20界面的相互作用机理[J].火炸药学报,2005,28(3):23.
[3]于宪峰.纳米碳管对CL-20热分解性能的影响[J].火炸药学报,2004,27(3):80.
[4]王晓红,衡淑云,张 皋,等.DSC/TG-MS联用技术研究CL-20与NC-NG体系的相互作用[J].火炸药学报,2007,30(4):20.
[5]王申,金韶华,盛思源,等.含CL-20的NEPE推进剂能量水平分析[J].火炸药学报,2002,25(1):12.
[6]冯泽旺,刘翠玲,方涛,等.二乙酰基四硝基六氮杂异伍兹烷分子和晶体结构[J].火炸药学报,2001,24(1):38.
[7]丁 黎,赵凤起,刘子如,等.含CL-20的NEPE推进剂各组分热分解的相互影响[J].火炸药学报,2008,31(2):38.
[8]丁黎,赵凤起,潘清,等.原位傅里叶变换红外光谱研究含CL-20的NEPE推进剂的热分解[J].火炸药学报,2008,31(4):77.
[9]王鼎,曹端林,王建龙,等.Span类表面活性剂对CL 20重结晶的影响[J].火炸药学报,2010,33(5):48.
 WANGDing,CAO Duan-lin,WANG Jian-long,et al.Influences of Span Surfactants on the CL-20 Recrystallization[J].,2010,33(5):48.
[10]刘芮,尹艳丽,张同来,等.CL -20热分解的动态真空安定性试验方法[J].火炸药学报,2011,34(2):21.
 LIU Rui,YIN Yan-li,ZHANG Tong-lai,et al.Dynamic Vacuum Stability Test Method for Thermal Decomposition of CL-20[J].,2011,34(5):21.
[11]Lemi Türker.Effect of Magnesium Atom on CL-20——A DFT Treatment[J].火炸药学报,2017,40(6):17.[doi:10.14077/j.issn.1007-7812.2017.06.003]
 Lemi Türker.Effect of Magnesium Atom on CL-20——A DFT Treatment[J].,2017,40(5):17.[doi:10.14077/j.issn.1007-7812.2017.06.003]

备注/Memo

备注/Memo:
收稿日期:2018-06-17;改回日期:2018-09-11。
作者简介:Lemi Türker (1950-),male,Prof.,Dr.,research field:organic chemistry.E-mail:lturker@metu.edu.tr
更新日期/Last Update: 1900-01-01