|本期目录/Table of Contents|

[1]侯聪花,郭晨,刘志强,等.非溶剂体系温度对细化RDX影响的分子动力学模拟及实验研究[J].火炸药学报,2018,41(4):375-381.[doi:10.14077/j.issn.1007-7812.2018.04.010]
 HOU Cong-hua,GUO Chen,LIU Zhi-qiang,et al.Molecular Dynamics Simulation and Experimental Study of the Effect of Temperature of Non-solvent System on Recrystallized RDX[J].,2018,41(4):375-381.[doi:10.14077/j.issn.1007-7812.2018.04.010]
点击复制

非溶剂体系温度对细化RDX影响的分子动力学模拟及实验研究()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第4期
页码:
375-381
栏目:
出版日期:
2018-08-23

文章信息/Info

Title:
Molecular Dynamics Simulation and Experimental Study of the Effect of Temperature of Non-solvent System on Recrystallized RDX
作者:
侯聪花 郭晨 刘志强 贾新磊 张诗敏
中北大学环境与安全工程学院, 山西 太原 030051
Author(s):
HOU Cong-hua GUO Chen LIU Zhi-qiang JIA Xin-lei ZHANG Shi-min
School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
关键词:
RDX喷射重结晶非溶剂体系分子动力学模拟性能表征
Keywords:
RDXjet crystallizationnon-solvent systemmolecular dynamics simulationproperty characterization
分类号:
TJ55;V438
DOI:
10.14077/j.issn.1007-7812.2018.04.010
文献标志码:
-
摘要:
利用自行研制能定量控制的喷射重结晶装置,以二甲基亚砜为溶剂、水为非溶剂细化得到RDX,同时结合分子动力学方法探讨了喷射重结晶RDX过程中最佳非溶剂体系温度,以及不同温度对制备RDX晶体的影响;采用扫描电子显微镜(SEM)、X射线粉末衍射仪(P-XRD)、差式扫描量热法(DSC)对其进行性能表征和热分析;并测试了其撞击感度。结果表明,分子动力学模拟制备RDX的最佳非溶剂体系温度与实验结果一致,即最佳温度为30℃,在此条件下可获得中值粒径为836nm、粒径分布均匀、形貌趋于球形且表面光滑的RDX;与原料RDX相比,细化后的RDX表观活化能升高了46.85kJ/mol,具有较好的热安定性,指前因子(lg(A/min))提高了4.87,热爆炸临界温度增加1.14℃,撞击感度(H50)最大提高至40.07 cm。
Abstract:
RDX was prepared by self-developed jet-recrystallization device that is capable of quantitative control using dimethyl sulfoxide as solvent and water as non-solvent. The optimal non-solvent system temperature in the jet-recrystallization RDX process and the influence of different temperature on the preparation of RDX crystals were discussed by molecular dynamics method. Scanning electron microscopy (SEM), X-ray powder diffractometer (P-XRD) and difference scanning calorimetry (DSC) were used to conduct the performance characterization and thermal analysis. The results show that the optimum non-solvent system temperature of RDX prepared by molecular dynamics simulation is in agreement with the experimental result, that is, the optimum temperature is 30℃. Under this condition, the median particle diameter of 836 nm can be obtained and the particle size distribution is uniform, the morphology tends to be spherical and the surface of RDX is smooth. The apparent activation energy of refined RDX is 46.85kJ/mol higher than that of raw material RDX, compared with the raw material RDX, the refined RDX has good thermal stability, the pre-exponential factor (lg(A/min)) increases by 4.84, the critical temperature of thermal explosion increases by 1.14℃, and the maximum impact sensitivity increases to 40.07 cm.

参考文献/References:

[1] 李松远. RDX及其缺陷晶体和它们为基PBXs的MD模拟[D]. 南京:南京理工大学, 2012. LI Song-yuan. RDX and its defective crystals and their MD analog for the base PBXs[D]. Nanjing:Nanjing University of Science and Technology, 2012.
[2] 高晓敏,黄明.I-RDX及其PBX老化研究进展[J].含能材料,2010, 18(2):236-240 GAO Xiao-min,HUANG Ming. Review on ageing of I-RDX and I-RDX based PBX[J]. Chinese Journal of Energetic Materials, 2010, 18(2):236-240.
[3] 刘波,刘少武,张远波,等.RDX降感技术研究进展[J].化学推进剂与高分子材料,2012, 10(1):67-70. LIU Bo, LIU Shao-wu, ZHANG Yuan-bo, et al. Research progress on RDX reduction technology[J]. Chemical Cropellant and Polymer Materials, 2012, 10(1):67-70.
[4] 王昕.纳米含能材料研究进展[J].火炸药学报, 2006, 29(2):29-32. WANG Xin.Advance in nanometric ingredients and nanocomposites of energetic materials[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2006, 29(2):29-32.
[5] 王龙祥. 纳米RDX的制备及其在PBX炸药中的应用探索研究[D]. 南京:南京理工大学, 2014. WANG Long-xiang. Preparation of nanoscale RDX and its application in PBX explosive[D]. Nanjing:Nanjing University of Science and Technology, 2014.
[6] 谯志强. 不同晶体形貌的超细RDX制备技术和性能研究[D].北京:中国工程物理研究院,2005. QIAO Zhi-qiang.Study on the preparation technology and properties of ultrafine RDX with different crystal morphology[D]. Beijing:China Academy of Engineering Physics, 2005.
[7] 宋小兰,李凤生,张景林,等.粒度和形貌及粒度分布对RDX安全和热分解性能的影响[J].固体火箭技术,2008, 31(2):168-172. SONG Xiao-lan, LI Feng-sheng, ZHANG Jing-lin,et al. Effects of particle size and morphology and particle size distribution on RDX safety and thermal decomposition properties[J]. Journal of Solid Rocket Technology, 2008, 31(2):168-172.
[8] 蔡兴旺, 杨继华, 张景林,等. SEDS技术制备亚微米RDX的喷嘴结构设计[J]. 含能材料, 2016(7):678-685. CAI Xing-wang, YANG Ji-hua, ZHANG Jing-lin, et al. Design of nozzle structure for submicron RDX prepared by SEDS technology[J]. Chinese Journal of Energetic Materials, 2016(7):678-685.
[9] 陈刚. 溶液中黑索金生长形态控制的理论研究[D].南京:南京理工大学,2016. CHEN Gang. The theoretic study for morp-hololgy control of hexogen in solution[D]. Nanjing:Nanjing University of Science & Technology,2016.
[10] 马松, 袁俊明, 刘玉存,等. NTO结晶形貌的预测[J]. 火炸药学报, 2014, 37(1):53-57. MA Song,YUAN Jun-ming,LIU Yu-cun,et al.Prediction of crystal morphology on NTO[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2014, 37(1):53-57.
[11] 文国, 闻利群, 王美妮,等. CL-20结晶形貌的预测[J]. 山西化工, 2014, 34(2):27-31. WEN Guo,WEN Li-qun,WANG Mei-ni,et al. Prediction of crystal morphology on CL-20[J]. Shanxi Chemical Industry, 2014, 34(2):27-31.
[12] Chen J, Wang J, Zhang Y, et al. Crystalgrowth, structure and morphology of hyd-rocortisone methanol solvate[J]. Journal of Crystal Growth, 2004, 265(1):266-273.
[13] 文国. CL-20晶习研究及CL-20/TATB共晶的分子动力学模拟[D]. 太原:中北大学, 2014. WEN Guo. Morphology of CL-20 and molecular dynamic simulation on co-crystal of CL-20/TATB[D]. Taiyuan:North University of China, 2014.
[14] 杨芗钰. 溶液结晶中L-丙氨酸晶体生长过程的分子模拟[D]. 上海:华东理工大学, 2013. YANG Xiang-yu. Growth of L-alanine crystals in aqueous solution:a molecular modeling study[D]. Shanghai:East China University of Science and Technology, 2013.
[15] 王晶禹,张景林,王保国. HMX炸药的重结晶超细化技术研究[J].北京理工大学学报, 2000, 20(3):385-388. WANG Jing-yu, ZHANG Jing-lin, WANG Bao-guo.Study on the recrystallization superfine technology of HMX explosives[J]. Journal of Beijing Institute of Technology, 2000, 20(3):385-388.
[16] 侯聪花,贾新磊,王晶禹,等.非溶剂制备细化HMX及其性能表征[J].火炸药学报,2016, 39(4):27-31. HOU Cong-hua, JIA Xin-lei, WANG Jing-yu, et al. Preparation of refined HMX by non-solvent and its characterization[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2016, 39(4):27-31.
[17] 张克从, 张乐. 晶体生长科学与技术[M].北京:科学出版社, 1997.
[18] 弗林特.结晶学原理[M].北京:高等教育出版社,1958.
[19] 于海利.硝胺类炸药晶体生长的理论研究[D]. 绵阳:西南科技大学,2013. YU Hai-li. A theoretical study of the crystal growth of nitramine explosives[D]. Mianyang:Southwest University of Science and Technology, 2013.
[20] 王元元. 炸药重结晶晶形及粒度控制研究[D]. 太原:中北大学, 2009. WANG Yuan-yuan. Study on crystal shape and grain size control of recrystallization of explosives[D]. Taiyuan:North University of China, 2009.
[21] 章梓雄, 董曾南. 粘性流体力学[M]. 北京:清华大学出版社, 2011.
[22] 南京大学地质系编.结晶学[M]. 北京:人民出版社,1961.
[23] 胡福增. 材料表面与界面[M]. 上海:华东化工学院出版社, 2008.
[24] 刘琴. 纳米RDX粉体的制备[D]. 南京:南京理工大学, 2006. LIU Qin. Preparation of nanoscale RDX powder[D]. Nanjing:Nanjing University of Science and Technology, 2006.
[25] 郑峰,傅佩珍,景芳丽,等.La_2CaB_(10)O_(19)晶体的生长和缺陷研究[J].人工晶体学报,2003(4):329-333. ZHENG Feng, FU Pei-zhen, JING Fang-li,et al. Study on the growth and defects of La_2CaB_(10)O_(19) crystal[J]. Journal of Synthetic Crystals,2003(4):329-333.
[26] 芮久后, 王泽山, 刘玉海,等. 超细黑索今制备新方法[J]. 南京理工大学学报,1996(5):385-388. RUI Jiu-hou, WANG Ze-shan, LIU Yu-hai, et al. A new method for preparation of ultrafine RDX[J]. Journal of Nanjing University of Science and Technology, 1996(5):385-388.
[27] Kissinger H E.Reaction kinetics in differential themral analysis[J]. Analytical Chemistry, 1957,29(11):1702-1706.
[28] 吕勇,罗运军,郭凯,等.GAP型含能热塑性聚氨酯弹性体热分解反应动力学研究[J].固体火箭技术,2010,33(3):315-318. Lü Yong, LUO Yun-jun, GUO Kai, et al. Kinetic study of thermal decomposition reaction of GAP type energetic thermoplastic polyurethane elastomer[J]. Journal of Solid Rocket Technology, 2010, 33(3):315-318.
[29] 贾昊楠,安振涛,江劲勇,等.高RDX含量改性双基推进剂非等温反应动力学和热危险性[J]. 固体火箭技术,2015,38(5):689-696. JIA Hao-nan, AN Zhen-tao, JIANG Jin-yong, et al. Non isothermal reaction kinetics and thermal risk of high RDX content modified double base propellants[J]. Journal of Solid Rocket Technology, 2015, 38(5):689-696.
[30] 吕春玲, 张景林. 粒度对HMX撞击感度的影响[J]. 爆炸与冲击, 2003, 23(5):472-474. Lü Chun-ling, ZHANG Jing-lin. Influence of particle size on the impact sensitivity of HMX[J]. Explosion and Shock Waves, 2003, 23(5):472-474.

相似文献/References:

[1]杜美娜,罗运军.RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36.
[2]潘新洲,郑 剑,郭 翔,等.RDX/PEG悬浮液的流变性能[J].火炸药学报,2007,30(2):5.
[3]周润强,刘德新,曹端林,等.硝酸脲与RDX共晶炸药研究[J].火炸药学报,2007,30(2):49.
[4]陆明,周新利.RDX的TNT包覆钝感研究[J].火炸药学报,2006,29(6):16.
[5]刘子如,刘艳,范夕萍,等.RDX和HMX的热分解Ⅲ.分解机理[J].火炸药学报,2006,29(4):14.
[6]徐皖育,何卫东,张颖.高温长贮条件下太根发射药中RDX的迁移行为[J].火炸药学报,2006,29(3):29.
[7]徐皖育,何卫东,张颖.含RDX高能太根发射药的热分解性能[J].火炸药学报,2006,29(2):63.
[8]张永旭,吕春绪,刘大斌.重结晶法制备纳米RDX[J].火炸药学报,2005,28(1):49.
[9]蔡昇,王泽山.RDX改性双基球形小粒药的燃烧特性[J].火炸药学报,2005,28(2):26.
[10]薛爱莲,黄寅生,康聪成,等.纳米LaCoO3对RDX基混合炸药的热分解特性和感度的影响[J].火炸药学报,2005,28(2):75.

备注/Memo

备注/Memo:
收稿日期:2018-01-30;改回日期:2018-05-03。
基金项目:国家安全重大基础研究项目
作者简介:侯聪花(1971-),女,博士,副教授,从事火工药剂技术及安全工程技术研究。E-mail:houconghua@163.com
更新日期/Last Update: 1900-01-01