|本期目录/Table of Contents|

[1]杭贵云,余文力,王涛,等.CL-20/DNB共晶炸药晶体缺陷的理论计算[J].火炸药学报,2018,41(4):345-351,358.[doi:10.14077/j.issn.1007-7812.2018.04.005]
 HANG Gui-yun,YU Wen-li,WANG Tao,et al.Theoretical Calculation on Crystal Defect of CL-20/DNB Cocrystal Explosive[J].,2018,41(4):345-351,358.[doi:10.14077/j.issn.1007-7812.2018.04.005]
点击复制

CL-20/DNB共晶炸药晶体缺陷的理论计算()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第4期
页码:
345-351,358
栏目:
出版日期:
2018-08-23

文章信息/Info

Title:
Theoretical Calculation on Crystal Defect of CL-20/DNB Cocrystal Explosive
作者:
杭贵云 余文力 王涛 李臻
火箭军工程大学, 陕西 西安 710025
Author(s):
HANG Gui-yun YU Wen-li WANG Tao LI Zhen
Rocket Force University of Engineering, Xi’an 710025, China
关键词:
物理化学共晶炸药力学性能结合能晶体缺陷爆轰性能分子动力学CL-20
Keywords:
physical chemistrycocrystal explosivemechanical propertiesbinding energycrystal defectdetonation performancemolecular dynamicsCL-20
分类号:
TJ55;O641
DOI:
10.14077/j.issn.1007-7812.2018.04.005
文献标志码:
-
摘要:
为了研究晶体缺陷对CL-20/DNB共晶炸药的力学性能、稳定性、感度与爆轰性能的影响,建立了“完美”型及带有晶体缺陷(掺杂、空位与位错)的CL-20/DNB共晶炸药模型;采用分子动力学方法计算了不同模型的力学性能、结合能、引发键键长分布、键连双原子作用能、内聚能密度与爆轰参数。结果表明,与“完美”型晶体相比,缺陷晶体的拉伸模量、体积模量与剪切模量的值减小,而柯西压的值增大,表明体系的刚性减弱,塑性与延展性增强;缺陷晶体的结合能减小幅度为9.30%~17.21%,表明炸药中分子之间的相互作用力减弱,炸药的稳定性变差;缺陷晶体的引发键最大键长增大幅度为0.45%~4.76%,而键连双原子作用能减小幅度为5.10%~17.20%,内聚能密度减小幅度为2.45%~13.71%,表明其感度增大,安全性变差;缺陷晶体的密度与爆轰参数减小,其中空位缺陷对能量的影响最大。因此,晶体缺陷会对CL-20/DNB共晶炸药的稳定性、感度与能量特性产生不利影响。
Abstract:
To research the effect of crystal defect on the mechanical properties, stability, sensitivity and detonation performance of CL-20/DNB cocrystal explosive, the perfect model and defective (adulteration, vacancy and dislocation) CL-20/DNB cocrystal model were established. The mechanical properties, binding energy, trigger bond length distribution, interaction energy of trigger bond, cohesive energy density and detonation parameters of different cocrystal models were calculated by molecular dynamics method. The results show that compared with the perfect model, the tensile modulus, bulk modulus and shear modulus of defective crystals are decreased, while Cauchy pressure is increased, indicating that the rigidity of defective models is decreased, while plastic property and ductility are increased. The binding energies of defective crystals are declined by 9.30%-17.21%, indicating that the intermolecular interaction energy is decreased and the stability is worsened. The maximum trigger bond length of defective crystal models is increased by 0.45%-4.76%, while the interaction energy of trigger bond is decreased by 5.10%-17.20% and cohesive energy density is decreased by 2.45%-13.71%, indicating that the sensitivity is increased and the safety is worsened. The density and detonation parameters of defective crystals are decreased, and the vacancy defective has the greatest effect on the energy. Therefore, crystal defect has a negative effect on stability, sensitivity and energetic performance of CL-20/DNB cocrystal explosive.

参考文献/References:

[1] 王玉平,杨宗伟,李洪珍,等. CL-20/DNB共晶炸药的制备与表征[J]. 含能材料,2013,21(4):554-555. WANG Yu-ping, YANG Zong-wei, LI Hong-zhen, et al. Preparation and characterization of CL-20/DNB cocrystal explosive[J]. Chinese Journal of Energetic Materials, 2013, 21(4):554-555.
[2] Wang Y P, Yang Z W, Li H Z, et al. A novel cocrystal explosive of HNIW with good comprehensive properties[J]. Propellants, Explosives, Pyrotechnics, 2014, 39:590-596.
[3] 马秀芳,肖继军,黄辉,等. HMX和HMX/HTPB PBX的晶体缺陷理论研究[J]. 化学学报,2008,66(8):897-901. MA Xiu-fang, XIAO Ji-jun, HUANG Hui, et al. A theoretical study on crystal defect of HMX and HMX/HTPB PBX[J]. Acta Chimica Sinica, 2008, 66(8):897-901.
[4] Xu X J, Xiao J J, Huang H, et al. Molecular dynamics simulations on the structures and properties of ε-CL-20(001)/F2314 PBX[J]. Journal of Hazardous Materials, 2010, 175:423-428.
[5] Xiao J J, Li S Y, Chen J, et al. Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs[J]. Journal of Molecular Modeling, 2013, 19:803-809.
[6] Sun H. Compass:an ab initio force-field optimized for condense-phase applications-overview with details on alkanes and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102:7338-7364.
[7] Sun H, Ren P, Fried J R. The COMPASS force field:parameterization and validation for phosphazenes[J]. Computational and Theoretical Polymer Science, 1998, 8:229-246.
[8] Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. Journal of Chemical Physics, 1980, 72(4):2384-2393.
[9] Parrinello M, Rahman A. Polymorphic transition single crystals:a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52:7182-7190.
[10] 吴家龙. 弹性力学[M]. 上海:同济大学出版社,1993.
[11] Weiner J H. Statistical Mechanics of Elasticity[M]. New York:John Wiley, 1983.
[12] Bowden F P, Yoffe A D. Initiation and Growth of Explosion in Liquids and Solids[M]. Cambridge:Cambridge University Press, 1952.
[13] Kamlet M J, Adoiph H G. The relationship of impact sensitivity with structure of organic high explosives[J]. Propellants, Explosives, Pyrotechnics, 1979, 4:30-34.
[14] 刘强,肖继军,陈军,等. 不同温度下ε-CL-20晶体感度和力学性能的分子动力学模拟计算[J]. 火炸药学报,2014,37(2):7-12. LIU Qiang, XIAO Ji-jun, CHEN Jun, et al. Molecular dynamics simulations on sensitivity and mechanical properties of ε-CL-20 crystal at different temperatures[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2014, 37(2):7-12.
[15] 赵丽,肖继军,陈军,等. RDX基PBX的模型、结构、能量及其与感度关系的分子动力学研究[J]. 中国科学:化学,2013,43(5):576-584. ZHAO Li, XIAO Ji-jun, CHEN Jun, et al. Molecular dynamics study on the relationships of modeling, structural structure and energy properties with sensitivity for RDX-based PBXs[J]. Scientia Sinica Chemica, 2013, 43(5):576-584.
[16] 刘冬梅,赵丽,肖继军,等. 不同温度下HMX和RDX晶体的感度判别和力学性能预估-分子动力学比较研究[J]. 高等学校化学学报,2013,34(11):2558-2565. LIU Dong-mei, ZHAO Li, XIAO Ji-jun, et al. Sensitivity criterion and mechanical properties prediction of HMX and RDX crystals at different temperatures-comparative study with molecular dynamics simulation[J]. Chemical Journal of Chinese Universities, 2013, 34(11): 2558-2565.
[17] Xiao J J, Zhao L, Zhu W, et al. Molecular dynamics study on the relationships of modeling, structural and energy properties with sensitivity for RDX-based PBXs[J]. Science China Chemistry, 2012, 55(12): 2587-2594.
[18] 许晓娟,肖鹤鸣,居学海,等. ε-六硝基六氮杂异伍兹烷(CL-20)热解机理的理论研究[J]. 有机化学,2005,25(5):536-539. XU Xiao-juan, XIAO He-ming, JU Xue-hai, et al. Theoretical study on pyrolysis mechanism for ε-hexanitrohexaazaisowurtzitane[J]. Chinese Journal of Organic Chemistry, 2005, 25(5): 536-539.
[19] Geetha M, Nair U R, Sarwade D B, et al. Studies on CL-20: the most powerful high energy material[J]. Journal of Thermal Analysis and Calorimetry, 2003, 73: 913-922.
[20] 王玉玲,余文力. 炸药与火工品[M]. 西安:西北工业大学出版社,2011.

相似文献/References:

[1]何卫东,董朝阳.高分子钝感发射药的低温感机理[J].火炸药学报,2007,30(1):9.
[2]张 昊,彭 松,庞爱民,等.NEPE推进剂老化过程中结构与力学性能的关系[J].火炸药学报,2007,30(1):13.
[3]路向辉,曹继平,史爱娟,等.表面处理芳纶纤维在丁羟橡胶中的应用[J].火炸药学报,2007,30(1):21.
[4]李春迎,王 宏,孙 美,等.遥感FTIR光谱技术在固体推进剂羽焰测试中的应用[J].火炸药学报,2007,30(1):28.
[5]杜美娜,罗运军.RDX表面能及其分量的测定[J].火炸药学报,2007,30(1):36.
[6]王国栋,刘玉存.神经网络在炸药晶体密度预测中的应用[J].火炸药学报,2007,30(1):57.
[7]周诚,黄新萍,周彦水,等.FOX-7的晶体结构和热分解特性[J].火炸药学报,2007,30(1):60.
[8]张秋越,孟子晖,肖小兵,等.用分子烙印聚合物吸附溶液中的TNT[J].火炸药学报,2007,30(1):64.
[9]崔建兰,张 漪,曹端林.三羟甲基丙烷三硝酸酯的热分解性能[J].火炸药学报,2007,30(1):71.
[10]李进华,孙兆懿.四氧化二氮胶体饱和蒸气压的测试及分析[J].火炸药学报,2007,30(1):74.

备注/Memo

备注/Memo:
收稿日期:2018-01-16;改回日期:2018-03-08。
基金项目:武器装备预先研究项目(No.403020302)
作者简介:杭贵云(1989-),男,博士研究生,从事导弹战斗部工程研究。E-mail:1910319052@qq.com
更新日期/Last Update: 1900-01-01