|本期目录/Table of Contents|

[1]唐婧,常双君,滕学锋,等.高燃速推进剂GATo的热安全性分析[J].火炸药学报,2018,41(3):285-288.[doi:10.14077/j.issn.1007-7812.2018.03.012]
 TANG Jing,CHANG Shuang-jun,TENG Xue-feng,et al.Analysis on Thermal Safety of High Burning Rate Propellant GATo[J].,2018,41(3):285-288.[doi:10.14077/j.issn.1007-7812.2018.03.012]
点击复制

高燃速推进剂GATo的热安全性分析()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第3期
页码:
285-288
栏目:
出版日期:
2018-06-29

文章信息/Info

Title:
Analysis on Thermal Safety of High Burning Rate Propellant GATo
作者:
唐婧 常双君 滕学锋 闫伟 张行
1. 中北大学环境与安全工程学院, 山西 太原 030051;
2. 西安近代化学研究所, 陕西 西安 710065
Author(s):
TANG Jing CHANG Shuang-jun TENG Xue-feng YAN Wei ZHANG Xing
1. College of Environment and Safety Engineering, North University of China, Taiyuan 030051, China;
2. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
关键词:
高燃速推进剂GATo热安全性热爆炸临界温度5s爆发点
Keywords:
high burning rate propellantGATothermal safetycritical temperature of thermal explosion5s explosion temperature
分类号:
TJ55;V512
DOI:
10.14077/j.issn.1007-7812.2018.03.012
文献标志码:
-
摘要:
为研究高燃速推进剂改铵铜(GATo)的热安全性,采用差示扫描量热(DSC)法和热重(TG)法分析了GATo推进剂的热分解过程,计算了其热分解活化能(Ea)、指前因子(A)、分解温度(te0)、热爆炸临界温度(t0)及热力学参数,并测试了压伸成型管状GATo及含溶剂GATo推进剂药浆的5 s延滞期爆发点及热爆发反应参数。结果表明,采用Kissinger法计算得到GATo推进剂的热分解活化能为139.1 kJ/mol,指前因子为7.5×1015 s-1,分解温度为172.0 ℃;根据Hu-Zhao-Gao法计算得到GATo推进剂的热爆炸临界温度为182.8 ℃,低于RDX-CMDB推进剂GHT及GHQ;在升温速率为10 ℃/min时,GATo推进剂分解峰值温度的活化自由能(ΔG)为113.8 kJ/mol,活化焓(ΔH)为135.3 kJ/mol,活化熵(ΔS)为29.7 J/(K·mol)-1;压伸成型管状GATo与含溶剂GATo药浆的5 s延滞期爆发点分别为231和234 ℃,热爆发分解反应活化能分别为112和132 kJ/mol,表明溶剂对其热爆发分解反应活化能有较大影响。
Abstract:
To study the thermal safety of high burning rate propellant GATo, the thermal decomposition process of GATo propellant were analyzed by DSC and TG. The activation energy(Ea) and pre-exponential factor(A) of thermal decomposition, decomposition temperature(te0), critical temperature of thermal explosion (tb) and thermodynamic parameters of GATo propellant were calculated. The 5 s explosion temperature and the thermal decomposition reaction parameters of tubular GATo propellant by extrusion molding and GATo propellant slurry with solvent at different temperatures were measured. The results show that the activation energy(Ea) and pre-exponential factor(A) calculated by Kissinger’s method are 139.1 kJ/mol and 7.5×1015 s-1, respectively and the decomposition temperature is 172.0℃. The critical temperature of thermal explosion calculated by Hu-Zhao-Gao’s method is 182.8℃, which is lower than that of RDX-CMDB propellants GHT or GHQ. The free energy of activation (ΔG), enthalpy of activation(ΔH) and entropy of activation(ΔS) for GATo propellant decomposition reaction at the temperature of decomposition peak at a heating rate of 10℃/min are 113.8 kJ/mol, 135.3 kJ/mol and 29.7 J/(K·mol)-1, respectively. The 5 s explosion temperature of tubular GATo by extrusion molding and GATo propellant slurry with solvent are 231 and 234℃, respectively, and their activation energy of thermal explosive decomposition reaction are 112 and 132 kJ/mol, respectively, showing that adding solvent to GATo propellant has an significant influence for the thermal explosion decomposition reaction activation energy.

参考文献/References:

[1] 赵孝彬, 陈华庭. 固体推进剂的热安全性研究[C]//第八届全国爆炸与安全技术学术交流会. 南京:南京理工大学, 2004.
[2] 樊瑞君, 王煊军, 刘代志. 含能材料热安定性及热安全性评价方法研究进展[J]. 化学推进剂与高分子材料, 2004, 2(2):22-24. FAN Rui-jun, WANG Xuan-jun, LIU Dai-zhi. Research progress on evaluation methods for thermal stability and thermal safety of energetic materials[J]. Chemical Propellants and Polymeric Materials, 2004, 2(2):22-24.
[3] 国防科技工业委员会. 火药试验方法GJB 770B-2005606. 1爆发点5s延滞期法[S].北京:国防科工委军标出版社, 2005.
[4] 孙金华, 陆守香, 孙占辉. 自反应性化学物质的热危险性评价方法[J]. 中国安全科学学报, 2003, 13(4):44-47. SUN Jin-hua, LU Shou-xiang, SUN Zhan-hui. Study on thermal risk evaluation of reactive substance[J]. China Safty Science Journal, 2003, 13(4):44-47.
[5] 贾昊楠, 安振涛, 路桂娥, 等. 某新型改性双基推进剂的热安全性[J]. 固体火箭技术, 2014, 37(5):662-665. JIA Hao-nan, AN Zhen-tao, LU Gui-e, et al. Thermal safety of one new-type CMDB propellant[J]. Journal of Solid Rocket Technology, 2014, 37(5):662-665.
[6] 陈永康, 陈明华, 张力, 等. 用快速筛选仪研究发射药的热分解[J]. 爆破器材, 2014, 43(3):48-51. CHEN Yong-kang, CHEN Ming-hua, ZHANG Li, et al. Study on the thermal decomposition of propellant using rapid screen device[J]. Explosive Materials, 2014, 43(3):48-51.
[7] 陈晨, 路桂娥, 江劲勇,等. GATo-3推进剂的烤燃实验[J]. 含能材料, 2014, 23(6):563-567. CHEN Chen, LU Gui-e, JIANG Jin-yong,et al.Cook-off test of GATo-3 propellant[J].Chinese Journal of Energetic Materials,2014, 23(6):563-567.
[8] 刘子如. 含能材料热分析[M]. 北京:国防工业出版社, 2008.
[9] ZHANG Tong-lai, HU Rong-zu, XIE Yi, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC[J]. Thermochimica Acta, 1994, 244:171-176.
[10] Jaroslav, Sestak. Is the original Kissinger equation obsolete today:not obsolete the entire non-isothermal kinetics[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(1):3-7.
[11] 赵宏安, 胡荣祖, 王喜军, 等. 1, 3, 3-三硝基氮杂环丁烷的热安全性[J]. 化学学报, 2009, 67(22):2536-2540. ZHAO Hong-an, HU Rong-zu, WANG Xi-jun, et al. Thermal safety of 1, 3, 3-trinitroazetidine(TNAZ)[J]. Acta Chimica Sinica, 2009, 67(22):2536-2540.
[12] 曲国庆, 江劲勇, 路桂娥,等.GHQ推进剂的热分解行为[J].装甲兵工程学院院报, 2017, 31(4):65-68. QU Guo-qing, JIANG Jin-yong, LU Gui-e, et al.Thermal decomposition behavior of GHQ propellant[J].Journal of Academy of Armored Force Engineering,2017, 31(4):65-68.
[13] 陈晨, 路桂娥, 江劲勇,等. 改性推进剂的热安全性研究[J]. 固体火箭技术, 2016, 39(1):78-82. CHEN Chen, LU Gui-e, JIANG Jin-yong, et al. Thermal safety analysis of CMDB propellant[J]. Journal of Solid Rocket Technology, 2016, 39(1):78-82.
[14] 胡荣祖, 赵凤起, 高红旭, 等. 量热学基础与应用[M]. 北京:科学出版社. 2011.
[15] 刘子如, 岳璞, 任晓宁, 等. 热爆发活化能研究[J]. 火炸药学报, 2011, 34(6):58-63. LIU Zi-ru, YUE Pu, REN Xiao-ning, et al. Investigation on activation energy of heat explosion[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2011, 34(6):58-63.

相似文献/References:

[1]滕学锋,李旭利,党永战.改善AP-CMDB高燃速推进剂低温力学性能技术[J].火炸药学报,2004,27(4):66.
[2]王宁飞,滕学锋,冯伟.减少高燃速推进剂药管内外压差的优化设计方法[J].火炸药学报,1994,17(1):6.
[3]沙恒,陈舒林,李凤生,等.颗粒粘结高燃速固体推进剂燃速的数值拟合[J].火炸药学报,1996,19(2):26.
 Sha Heng,Chen Shulin,Li Fengsheng,et al.Numerical Simulation of Burning Rate for Grain Binding High Burning Rate Propellant[J].,1996,19(3):26.
[4]沙恒.颗粒粘结高燃速推进剂药柱中溶剂迁移的研究[J].火炸药学报,1997,20(2):6.
 Sha Heng.Study on Solvents Permeating of Grain Binding High Rate Propellant[J].,1997,20(3):6.
[5]邓重清,蔚红建,张正中.Al粉在高燃速AP/CMDB推进剂中的应用[J].火炸药学报,2015,38(3):77.[doi:10.14077/j.issn.1007-7812.2015.03.015]
 DENG Chong qing,YU Hong jian,ZHANG Zheng zhong.Application of Al Powder on High Burningrate AP/CMDB Propellants[J].,2015,38(3):77.[doi:10.14077/j.issn.1007-7812.2015.03.015]

备注/Memo

备注/Memo:
收稿日期:2017-11-20;改回日期:2018-01-18。
作者简介:唐婧(1993-),女,硕士研究生,从事含能材料安全性评价研究。E-mail:amnosj11@163.com
通讯作者:常双君(1968-),女,教授,从事含能材料的配方设计及其应用研究。E-mail:junchsh@163.com
更新日期/Last Update: 1900-01-01