|本期目录/Table of Contents|

[1]崔子祥,冯雅楠,范杰,等.1,1’-二羟基-5,5’-联四唑钛盐的合成和热分解行为[J].火炸药学报,2018,41(3):250-255.[doi:10.14077/j.issn.1007-7812.2018.03.006]
 CUI Zi-xiang,FENG Ya-nan,FAN Jie,et al.Synthesis and Thermal Decomposition Behavior of 1,1’-Dihydxy-5,5’-bitetrazolate Titanium Salt[J].,2018,41(3):250-255.[doi:10.14077/j.issn.1007-7812.2018.03.006]
点击复制

1,1’-二羟基-5,5’-联四唑钛盐的合成和热分解行为()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第3期
页码:
250-255
栏目:
出版日期:
2018-06-29

文章信息/Info

Title:
Synthesis and Thermal Decomposition Behavior of 1,1’-Dihydxy-5,5’-bitetrazolate Titanium Salt
作者:
崔子祥 冯雅楠 范杰 赵凤起 薛永强 肖立柏
1. 西安近代化学研究所燃烧与爆炸技术重点实验室, 陕西 西安 710065;
2. 太原理工大学应用化学系, 山西 太原 030024
Author(s):
CUI Zi-xiang FENG Ya-nan FAN Jie ZHAO Feng-qi XUE Yong-qiang XIAO Li-bai
1. Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
2. Department of Applied Chemistry, Taiyuan University of Technology, Taiyuan 030024, China
关键词:
应用化学燃烧催化剂11’-二羟基-55’-联四唑钛盐Ti-BHT四唑类化合物热分解动力学
Keywords:
applied chemistrycombustion catalyst11’-dihydxy-55’-bitetrazolate titanium saltTi-BHTtetrazole compoundthermal decomposition kinetics
分类号:
TJ55;O642
DOI:
10.14077/j.issn.1007-7812.2018.03.006
文献标志码:
-
摘要:
以二氯乙二肟、叠氮化钠、盐酸羟胺和三氯化钛等为原料,合成了1,1’-二羟基-5,5’-联四唑钛盐(Ti-BHT)燃烧催化剂。利用差示扫描量热法和热重法研究了不同升温速率下Ti-BHT金属盐的热分解过程,获得了热分解动力学参数和热分解机理函数;用Ozawa法和Kissinger法计算了热分解动力学参数,进而计算出自加速分解温度、热爆炸临界温度和热力学参数;用微量热法测定了Ti-BHT的比热容。结果表明,Ti-BHT 的活化能Ek为143.49 kJ/mol,指前因子Ak为1.23×1013 s-1,热分解属于n=3的随机成核和随后生长机理;自加速分解温度TSADT为466.21 K,临界爆炸温度Tbpo为505.42 K,热分解活化自由能ΔG为142.74 kJ/mol,活化焓ΔH为139.41 kJ/mol,活化熵ΔS为-6.78 J/(mol·K);Ti-BHT在298.15 K的标准摩尔比热容为800.51 J/(mol·K);摩擦爆炸概率为20%,特性落高大于125.9 cm,说明其机械感度较低,具有较好的安全性能。
Abstract:
1,1’-Dihydxy-5,5’-bitetrazolate titanium salt (Ti-BHT)combustion catalyst was synthesized using dichloroglyoxime, sodium azide, hydroxylamine hydrochloride and titanium trichloride as raw materials. The thermal decomposition process of Ti-BHT was studied by differential scaning calorimetry (DSC) and thermogravimetry (TG) at different heating rates, and the kinetic parameters and mechanism functions of the thermal decomposition were obtained. Its thermal decomposition kinetic parameters were studied by Ozawa’s and Kissinger’s methods, and then the self-accelerating decomposition temperature, critical temperature of thermal explosion and thermodynamic parameters were calculated. The specific heat capacity of Ti-BHT was determined by microcalorimetry. The results show that the apparent activation energy Ek is 143.49 kJ/mol, pre-exponential factor Ak is 1.23×1013 s-1, thermal decomposition belongs to the random nucleation and subsequent growth mechanism with n=3. The self-accelerating decomposition temperature TSADT and the critical temperature of thermal explosion Tbpo are 466.21 and 505.42 K, respectively; the free energy of activation of thermal decomposition ΔG is 142.74 kJ/mol, the enthalpy of activation ΔH is 139.41 kJ/mol, and entropy of activation ΔS is -6.78 J/(mol·K). The standard molar specific heat capacity is 800.51 J/(mol·K) at 298.15 K. Its explosion probability of impact sensitivity is 20%, the characteristic drop height is more than 125.9 cm, showing that its mechanical sensitivity is low and it has good safety performance.

参考文献/References:

[1] Gao J, Wang L, Yu H, et al. Recent research progress in burning rate catalysts[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5):404-409.
[2] Tong R, Zhao Y, Wang L, et al. Recent research progress in the synthesis and properties of burning rate catalysts based on ferrocene-containing polymers and derivatives[J]. Journal of Organometallic Chemistry, 2014, 755:16-32.
[3] 汪营磊, 赵凤起, 仪建华. 固体火箭推进剂用燃烧催化剂研究新进展[J]. 火炸药学报, 2012, 35(5):1-8. WANG Ying-lei, ZHAO Feng-qi, YI Jian-hua. New progress of study on combustion catalysts used for solid rocket propellant[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2012, 35(5):1-8.
[4] Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications[J]. Journal of Hazardous Materials, 2004, 112(1):1-15.
[5] 邓敏智, 杜恒, 赵凤起,等. 四唑类盐的制备及其在固体推进剂中的应用初探[J]. 固体火箭技术, 2003, 26(3):53-54. DENG Min-zhi, DU Heng, ZHAO Feng-qi, et al. Study on the synthesis of tetrazales salts and their applicationin solid propellant[J]. Journal of Solid Rocket Technology, 2003, 26(3):53-54.
[6] 赵凤起, 陈沛, 李上文,等. 四唑类化合物的金属盐作为微烟推进剂燃烧催化剂的研究[J]. 兵工学报, 2004, 25(1):30-33. ZHAO Feng-qi, CHEN Pei, LI Shang-wen. Catalysis of metallic salts of tetrazales on combustion of RDX-CMDB propellant.[J]. Acta Armamentarii, 2004, 25(1):30-33.
[7] Shiwei Wang, Li Yang, Tonglai Zhang, et al. Synthesis, crystal structure, thermal decomposition, and explosive properties of[Bi(tza)3]n, (tza=tetrazole acetic acid)[J]. Journal of Coordination Chemistry, 2011, 64(15):2583-2591.
[8] Boneberg F, Kirchner A, Klapötke T M, et al. A study of cyanotetrazole oxides and derivatives thereof.[J]. Chemistry-An Asian Journal, 2013, 8(1):148-159.
[9] Fischer D, Klapötke T M, Piercey D G, et al. Synthesis of 5-aminotetrazole-1N-oxide and its azo derivative:a key step in the development of new energetic materials[J]. Chemistry, 2013, 19(14):4602-4613.
[10] 毕福强, 樊学忠, 许诚,等. 1,1’-二羟基-5,5’-联四唑的合成及理论研究[J]. 火炸药学报, 2013, 36(4):22-25. BI Fu-qiang, FAN Xue-zhong, XU Cheng. et al. 1, 1’-dihydroxy-5, 5’-altetrazolium synthesis and theory research[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2013, 36(4):22-25.
[11] 杨尧, 申程, 陆明,等. 1,1’-二羟基-5,5’-联四唑-5-氨基四唑盐的合成及性能预估[J]. 火炸药学报, 2014, 37(5):9-13. YANG Yao, SHEN Cheng, LU Ming, et al. Synthesis and property prediction of 5-aminotetrazolium 1’-hydroxy-1H,1H-5,5’-bitetrazol-1-olate[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2014, 37(5):9-13.
[12] 王小军, 张晓鹏, 宋磊,等. 5,5’-联四唑-1,1’-二氧氨盐的合成、晶体结构及性能[J]. 火炸药学报, 2015(4):35-38. WANG Xiao-jun, ZHANG Xiao-peng, SONG Lei, et al. Synthesis, crystal structure and properties of the ammonia salt of 5, 5’-bistetrazloe-1, 1’-diolate[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015(4):35-38.
[13] Fischer N, Fischer D, Klapötke T, et al. Pushing the limits of energetic materials-the synthesis and characterization of dihydroxylammonium 5,5prime-bistetrazole-1,1prime-diolate[J]. Journal of Materials Chemistry, 2012, 22(38):20418-20422.
[14] 梁丽轩,周智明.钝感高能含能离子盐的研究进展[J]. 火炸药学报, 2014, 37(1):1-11. LIANG Li-xuan, ZHOU Zhi-ming. Progress of study on insensitive high energy ionic salts[J].Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2014, 37(1):1-11.
[15] 刘萌, 李笑江, 严启龙,等. 新型燃烧催化剂在固体推进剂中的应用研究进展[J]. 化学推进剂与高分子材料, 2011, 9(2):29-33. LIU Meng, LI Xiao-jiang, YAN Qi-long, et al. Preparation and characterization of nano-sized NiB/SiO2/CTAB catalyst[J]. Chemical Propellants & Polymeric Materials, 2011, 9(2):29-33.
[16] 朱周朔, 姜振明, 王鹏程,等. 5,5’-联四唑-1,1’-二氧二羟铵的合成及其性能[J]. 含能材料, 2014, 22(3):332-336. ZHU Zhou-shuo, JIANG Zhen-ming, WNAG Peng-cheng, et al. Synthesis and properties of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate[J]. Chinese Journal of Energetic Materials, 2014, 22(3):332-336.
[17] 赵廷兴, 田均均, 李磊,等. 5,5’-联四唑-1,1’-二氧二羟铵(TKX-50)50克量级制备放大工艺[J]. 含能材料, 2014(6):744-747. ZHAO TinG-xing, TIAN Jun-jun, LI Lei, et al. Up-sizing 50 grams-scale synthesis technology of dihydroxyl ammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50)[J]. Chinese Journal of Energetic Materials, 2014(6):744-747.
[18] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706.
[19] Ozawa T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11):1881-1886.
[20] Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Journal of Polymer Science Part B:Polymer Letters, 1966, 4(5):323-328.
[21] 何志伟, 高大元, 刘祖亮. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物及其黏结炸药的热分解动力学[J]. 火炸药学报, 2009, 32(2):32-36. HE Zhi-wei, GAO Da-yuan, LIU Zu-liang. Thermal decomposition kinetics of 2,6-diamino-3,5-dinitropyridine 1-oxide and its formulation explosives[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2009, 32(2):32-36.
[22] 马晓明, 李斌栋, 吕春绪,等. 无氯TATB的合成及其热分解动力学[J]. 火炸药学报, 2009, 32(6):24-27. MA Xiao-ming, LI Bin-dong, Lü Chun-xu, et al. Synthesis and thermal decomposition kinetics of TATB without chloride[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2009, 32(6):24-27.
[23] 胡荣祖, 史启祯. 热分析动力学[M]. 北京:科学出版社, 2001:127-131.
[24] 胡荣祖, 高红旭, 赵凤起,等. 1,1’-二甲基-5,5’-偶氮四唑一水合物和2,2’-二甲基-5,5’-偶氮四唑的热安全性[J]. 含能材料, 2011, 19(2):126-131. HU Rong-zu, GAO Hong-xu, ZHAO Feng-qi,et al. Thermal safety of 1,1’-dimethy-5, 5’-azotetrazole and 2, 2’-dimethy-5,5’-azotetrazole[J]. Chinese Journal of Energetic Materials, 2011, 19(2):126-131.

相似文献/References:

[1]赵孝彬,蒲远远,陈教国,等.武器信息化条件下火炸药发展策略分析[J].火炸药学报,,():7.
 ZHAO Xiao-bin,PU Yuan-yuan,CHEN Jiao-guo,et al.The Analysis about Developed Strategy of Propellant and Explosive in the Circumstances of Weapon Informationization[J].,,(3):7.
[2]赵孝彬,蒲远远,陈教国,等.NEPE推进剂的燃烧转爆轰特性[J].火炸药学报,2007,30(1):4.
[3]肖正刚,应三九,徐复铭,等.发射药的等离子体点火燃烧中止试验研究[J].火炸药学报,2007,30(1):17.
[4]张晓宏,莫红军.下一代战术导弹固体推进剂研究进展[J].火炸药学报,2007,30(1):24.
[5]李 鹏,刘有智,李裕,等.用旋转填料床治理火炸药厂的氮氧化物尾气[J].火炸药学报,2007,30(1):67.
[6]周润强,刘德新,曹端林,等.硝酸脲与RDX共晶炸药研究[J].火炸药学报,2007,30(2):49.
[7]石 飞,王庆法,张香文,等.1,2-丙二醇二硝酸酯的绿色合成[J].火炸药学报,2007,30(2):75.
[8]马海霞,宋纪蓉,胡荣祖.3-硝基-1,2,4-三唑-5-酮及其盐的研究概述[J].火炸药学报,2006,29(6):9.
[9]陆明,周新利.RDX的TNT包覆钝感研究[J].火炸药学报,2006,29(6):16.
[10]刘有智,刁金祥,王贺,等.超重力-臭氧法处理TNT红水的试验研究[J].火炸药学报,2006,29(6):41.
[11]焦纬洲,刘有智,祁贵生.超重力技术在火炸药生产中的应用[J].火炸药学报,2009,32(2):87.
 JIAO Wei zhou,LIU You zhi,QI Gui sheng.Application of High Gravity Technology in Propellants and Explosives Production[J].,2009,32(3):87.

备注/Memo

备注/Memo:
收稿日期:2018-02-05;改回日期:2018-05-11。
基金项目:国家自然科学基金(No.21573157;No.21373147)
作者简介:崔子祥(1973-),男,博士,副教授,从事含能材料与纳米物理化学方面的研究。E-mail:zixiang2199@126.com
通讯作者:赵凤起(1963-),男,博士,博导,研究员,从事固体推进剂及含能材料研究。E-mail:zhaofqi@163.com
更新日期/Last Update: 1900-01-01