|本期目录/Table of Contents|

[1]陈腾,李强,郭双峰,等.GAP-HDI/CL-20纳米复合含能材料的制备、表征及其热分解特性[J].火炸药学报,2018,41(3):243-249.[doi:10.14077/j.issn.1007-7812.2018.03.005]
 CHEN Teng,LI Qiang,GUO Shuang-feng,et al.Preparation, Characterization and Thermal Decomposition Behavior of GAP-HDI/CL-20 Nano-composite Energetic Materials[J].,2018,41(3):243-249.[doi:10.14077/j.issn.1007-7812.2018.03.005]
点击复制

GAP-HDI/CL-20纳米复合含能材料的制备、表征及其热分解特性()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第3期
页码:
243-249
栏目:
出版日期:
2018-06-29

文章信息/Info

Title:
Preparation, Characterization and Thermal Decomposition Behavior of GAP-HDI/CL-20 Nano-composite Energetic Materials
作者:
陈腾 李强 郭双峰 郝嘎子 肖磊 柯香 高寒 赵刘明 李铎 姜炜
1. 南京理工大学化工学院国家特种超细粉体工程中心, 江苏 南京 210094;
2. 北方兴安化学工业有限公司, 山西 太原 030008;
3. 西安近代化学研究所, 陕西 西安 710065
Author(s):
CHEN Teng LI Qiang GUO Shuang-feng HAO Ga-zi XIAO Lei KE Xiang GAO Han ZHAO Liu-ming LI Duo JIANG Wei
1. National Special Superfine Powder Engineering Research Center of China, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2. Shanxi Northern Xing’an Chemical Industry Co., Ltd., Taiyuan 030008, China;
3. Xi’an Modern Chemistry Research Institution, Xi’an 710065, China
关键词:
GAP-HDI/CL-20纳米复合含能材料热力学动力学热爆炸临界温度
Keywords:
GAP-HDI/CL-20nano-composite energetic materialsthermodynamicskineticscritical temperature of thermal explosion
分类号:
TJ55;TQ560
DOI:
10.14077/j.issn.1007-7812.2018.03.005
文献标志码:
-
摘要:
以聚叠氮缩水甘油醚(GAP)为含能骨架,六亚甲基二异氰酸酯(HDI)为交联剂,采用溶胶-凝胶法结合真空冷冻干燥技术,制备了CL-20质量分数分别为25%、45%、60%的GAP-HDI/CL-20纳米复合含能材料。利用SEM、Raman、FT-IR对其结构和形貌进行了表征;利用DTA对其热分解特性进行了研究;根据不同升温速率下的DTA曲线测试结果对所制备样品的热分解动力学参数、热力学参数和热爆炸临界温度进行了计算。结果表明,CL-20粒子成功负载到了GAP-HDI凝胶骨架中,形貌由棱柱状转变为类球形,且粒径为纳米级;GAP-HDI/CL-20纳米复合含能材料的初始热分解峰温较原料CL-20均有所提前;CL-20质量分数分别为25%、45%、60%的GAP-HDI/CL-20纳米复合含能材料在高温热分解阶段表观活化能分别为224.9、228.9、231.7 kJ/mol,与原料CL-20相比,分别降低了28.4、24.4和21.6 kJ/mol,说明纳米复合粒子的热分解活性得以提高;GAP-HDI/L-20纳米复合含能材料的热力学参数和热爆炸临界温度均随着CL-20含量的增加而增大。
Abstract:
With glycidyl azide polymer (GAP) as energetic gel matrix and hexamethylene diisocyanate (HDI) as cross-linking agent, GAP-HDI/CL-20 nano-composite energetic materials containing 25%, 45% and 60% CL-20 in mass ratio were prepared by the sol-gel method and vacuum freezing-drying technology. Their structure and morphology were characterized by SEM, Raman and FT-IR,and the thermal decomposition characteristics were studied by DTA. According to the test results of DTA curves at different heating rates, the thermal decomposition kinetic parameters, thermodynamic parameters and critical temperature of thermal explosion of the prepared samples were calculated. The results show that CL-20 particles were successfully loaded into GAP-HDI gel skeleton. The morphologies of CL-20 particles are changed from prism to spheroid and the particle sizes are nano-scale. The initial thermal decomposition temperature of GAP-HDI/CL-20 is earlier than that of raw material CL-20. The apparent activation energies of GAP-HDI/CL-20 nano-composite energetic materials with CL-20 mass fraction of 25%,45% and 60% are 224.9, 228.9 and 231.7 kJ/mol, respectively, which are decreased by 28.4, 24.4 and 21.6 kJ/mol compared with that of raw material CL-20, indicating that the thermal decomposition activity of GAP-HDI/CL-20 is improved, the thermodynamic parameters and the critical temperature of thermal explosion increase with the increase of CL-20 content.

参考文献/References:

[1] Berner M K, Zarko V E, Talawar M B. Nanoparticles of energetic materials:synthesis and properties[J]. Combution Explosion & Shock Waves, 2013, 49(6):625-647.
[2] Kumar R, Siril P F, Soni P. Preparation of nano-RDX by evaporation assisted solvent-antisolvent interaction[J]. Propellants,Explosives,Pyrotechnics, 2014, 39(3):383-389.
[3] Guo X D, Ou Y G, Liu J, et al. Massive preparation of reduced-sensitivity nano CL-20 and its characterization[J]. Journal of Energetic Materials, 2015, 33(1):25-33.
[4] Tillotson T M, Gash A E, Simpson R L, et al. Nanostructured energetic materials using sol-gel methodologies[J]. Journal of Non-Crystalline Solids, 2000, 285(1):338-345.
[5] 储峰, 邓潘, 樊祥, 等. 溶剂-非溶剂法在含能材料中的应用[J]. 化学推进剂与高分子材料, 2010, 8(3):38-41. CHU Feng, DENG Pan, FAN Xiang, et al. Application of solvent-non-solvent method in energetic materials[J]. Chemical Propellants & Polymeric Materials, 2010, 8(3):38-41.
[6] 王维康, 李建民, 杨荣杰. Al/CuO复合物的制备及其热反应性能研究[J]. 固体火箭技术, 2016, 39(6):784-788. WANG Wei-kang, LI Jian-min, YANG Rong-jie. Study on the preparation of Al/CuO composites and its thermal properties[J]. Journal of Solid Rocket Technology, 2016, 39(6):784-788.
[7] Essel J T, Cortopassi A C, Kuo K K, et al. Formation and characterization of nano-sized RDX particles produced using the RESS-AS process[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(6):699-706.
[8] Ji W, Li X, Wang J. Preparation and characterization of CL-20/EPDM by a crystal refinement and spray drying method[J]. Central European Journal of Energetic Materials, 2015, 12(4):831-840.
[9] Thiruvengadathan R, Staley C, Geeson J M, et al. Enhanced combustion characteristics of bismuth trioxide-aluminum nanocomposites prepared through graphene oxide directed self-assembly[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5):729-734.
[10] Wang J Y, Wang R H, Liu F, et al. Preparation of nano-composite energetic material RDX/Fe2O3 by sol-gel method[J]. Journal of Solid Rocket Technology, 2014, 37(2):228-232.
[11] 汝承博, 张晓婷, 叶迎华,等. 用于喷墨打印微装药方法的纳米铝热剂含能油墨研究[J]. 火工品, 2013(4):33-36. RU Cheng-bo, ZHANG Xiao-ting, YE Ying-hua, et al. Study on nano-thermite energetic material for inkjet printing micro-charge method[J]. Initiators & Pyrotechnics, 2013(4):33-36.
[12] Li G P, Shen L H, Zheng B M, et al. The preparation and properties of AP-based nano-limit growth energetic materials[J]. Advanced Materials Research, 2014, 924:105-109.
[13] Nie F, Zhang J, Guo Q, et al. Sol-gel synthesis of nanocomposite crystalline HMX/AP coated by resorcinol-formaldehyde[J]. Journal of Physics & Chemistry of Solids, 2010, 71(2):109-113.
[14] 晋苗苗, 罗运军. RF/AP纳米复合材料的制备与表征[J].火炸药学报, 2012, 35(6):65-69. JIN Miao-miao, LUO Yun-jun. Preparation and characterizatuion of RF/AP nanocomposites[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao),2012, 35(6):65-69.
[15] Li G P, Liu M, Zhang R, et al. Synthesis and properties of RDX/GAP nano-composite energetic materials[J]. Colloid & Polymer Science, 2015, 293(8):2269-2279.
[16] 宋振伟, 严启龙, 李笑江, 等. 溶剂中ε-CL-20的晶型变化[J].含能材料, 2010,18(6):648-653. SONG Zhen-wei, YAN Qi-long, LI Xiao-jiang, et al. Crystal transition of ε-CL-20 in different solvent[J]. Chinese Journal of Energetic Material, 2010, 18(6):648-653.
[17] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706.
[18] Wang Y L, Zhao F Q, Ji Y P, et al. Synthesis, crystal structure and thermal behavior of 4-amino-3, 5-dinitropyrazole copper salt[J]. Chinese Chemical Letter, 2014, 25(6):902-906.

相似文献/References:

[1]兰元飞,罗运军.GA/AN纳米复合含能材料的制备与表征[J].火炸药学报,2015,38(2):15.[doi:10.14077/j.issn.1007-7812.2015.02.003]
 LAN Yuan-fei,LUO Yun-jun.Preparation and Characterization of Graphene Aerogel/Ammonium Nitrate Nano Composite Energetic Materials[J].,2015,38(3):15.[doi:10.14077/j.issn.1007-7812.2015.02.003]
[2]李国平,刘梦慧,申连华,等.RDX/GAP纳米复合含能材料的制备及热性能[J].火炸药学报,2015,38(2):25.[doi:10.14077/j.issn.1007-7812.2015.02.005]
 LI Guo-ping,LIU Meng-hui,SHEN Lian-hua,et al.Preparation and Thermal Properties of RDX/GAP Nano-composite Energetic Materials[J].,2015,38(3):25.[doi:10.14077/j.issn.1007-7812.2015.02.005]
[3]于佳莹,王建华,刘玉存,等.CL-20/开口多壁碳纳米管复合含能材料的制备与性能[J].火炸药学报,2017,40(3):72.[doi:10.14077/j.issn.1007-7812.2017.03.013]
 YU Jia-ying,WANG Jian-hua,LIU Yu-cun,et al.Preparation and Properties of CL-20/Split Multi-walled Carbon Nanotubes Composite Energetic Materials[J].,2017,40(3):72.[doi:10.14077/j.issn.1007-7812.2017.03.013]

备注/Memo

备注/Memo:
收稿日期:2018-01-20;改回日期:2018-03-19。
基金项目:北化集团青年科技创新专项项目(QKCZ201615)
作者简介:陈腾(1985-),男,博士研究生,从事纳米复合含能材料的制备及性能研究。E-mail:365556392@qq.com
通讯作者:姜炜(1974-),男,教授,从事纳米复合含能材料的制备及性能研究。E-mail:superfine_jw@126.com
更新日期/Last Update: 1900-01-01