|本期目录/Table of Contents|

[1]王可,刘宁,武宗凯,等.呋咱并哒嗪基稠环化合物结构与性能的理论研究[J].火炸药学报,2018,41(3):236-242.[doi:10.14077/j.issn.1007-7812.2018.03.004]
 WANG Ke,LIU Ning,WU Zong-kai,et al.Theoretical Investigation on Structure and Performance of Furazano-[3,4-d]-pyridazine-based Fused-ring Compounds[J].,2018,41(3):236-242.[doi:10.14077/j.issn.1007-7812.2018.03.004]
点击复制

呋咱并哒嗪基稠环化合物结构与性能的理论研究()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第3期
页码:
236-242
栏目:
出版日期:
2018-06-29

文章信息/Info

Title:
Theoretical Investigation on Structure and Performance of Furazano-[3,4-d]-pyridazine-based Fused-ring Compounds
作者:
王可 刘宁 武宗凯 付小龙 李焕 舒远杰 李军强 庞维强
西安近代化学研究所, 陕西 西安 710065
Author(s):
WANG Ke LIU Ning WU Zong-kai FU Xiao-long LI Huan SHU Yuan-jie LI Jun-qiang PANG Wei-qiang
Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
关键词:
呋咱并哒嗪密度泛函理论爆轰性能共面性
Keywords:
furazano-[34-d]-pyridazinedensity functional theorydetonation performancecoplanarity
分类号:
TJ55;O641
DOI:
10.14077/j.issn.1007-7812.2018.03.004
文献标志码:
-
摘要:
基于密度泛函理论,在B3LYP/6-311g(d,p)水平下,设计了3组新型呋咱并哒嗪基稠环化合物,对其结构和性能进行研究,并使用Kamlet-Jacobs计算其爆轰性能。结果表明,A组和B组化合物具有较好的共面性并且二面角变化范围为±5°,但C组化合物由于更多官能团间的排电子效应使得其共面性被严重损害;另外,与RDX和HMX相比,所有设计化合物均具有较高的密度(1.896~2.153 g/cm3)、爆速(8.55~9.98 km/s)和爆压(33.70~48.90 GPa);随所含硝基官能团数目的增加,对应化合物的密度、爆轰性能(N3取代化合物爆轰性能变化趋势相反),比冲和撞击感度逐渐增加,但其生成焓、键离解能、带宽和电火花感度逐渐减小(N3.取代化合物的生成焓和电火花感度变化趋势相反);另外,这些官能团降低分子稳定性的顺序为:-ONO2 > -C(NO23 > -CF(NO22 > -NO2 > -N3;NO2取代(A1,B1和C1)和CF(NO22取代(A3)4种稠环化合物有潜力成为高能密度材料。
Abstract:
Three series of novel furazano-[3,4-d]-pyridazine-based fused-ring compounds were designed, and their structures and performance were studied by density functional theory (DFT) at B3LYP/6-311g(d, p) level. Detonation performance was estimated by Kamlet-Jacobs equations. The results show that the compounds of A and B series exhibit good coplanarity and their dihedral angles vary within ±5°, but the coplanarity of C series was particularly damaged because of electron-withdrawing effect of more functional groups. Otherwise, all designed nitro-containing compounds possess high densities (1.896-2.153 g/cm3), detonation velocities (8.55-9.98 km/s) and detonation pressures (33.70-48.90 GPa) compared with RDX and HMX. As the number of nitro-containing groups increases, the densities, detonation performance and specific impulse (Isp) and impact sensitivities gradually increase (the trend of detonation performance is contrary for N3-substituted compounds), but the heats of formation (HOFs), bond dissociation energies (BDEs), band gaps (ΔE), and electric spark sensitivities (EES) gradually decrease (the trend of HOFs and EES is contrary for N3-substituted compounds). Otherwise, these functional groups decrease molecular stabilities in the order of -ONO2 > -C(NO2)3 > -CF(NO2)2 > -NO2 > -N3. Four kinds of NO2-replaced(A1, B1 and C1) and CF(NO2)2-substituted (A3) fused-ring compounds have the potential to become high-energy density materials (HEDMs).

参考文献/References:

[1] SHU Yuan-jie, HUO Ji-chuan. Theory of Explosives[M]. Beijing:Chemical Industry Press, 2011.
[2] WANG Xi-jie, XU Kang-zhen, et al. The insensitive energetic material trifurazano-oxacycloheptatriene (TFO):synthesis and detonation properties[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(1):9-12.
[3] SHU Yuan-jie, WANG Bo-zhou. Chemistry of Furoxan:Structure and Synthesis[M].Chengdu:Times Press, 2013.
[4] Frem D. Theoretical studies on energetic properties of s-triazine substituted aminofurazan and aminofuroxan derivatives-high performance energetic material systems[J]. Combustion, Explosion, and Shock Waves, 2014, 50(4):441-446.
[5] WANG Bo-zhou, LI Hui,LI Ya-nan, et al, Review on energetic compounds based on furoxanyl ether[J]. Chinese Journal of Energetic Materials, 2012, 20(4):385-390.
[6] HU Huan-xing,QIN Guang-ming,ZHANG Zhi-zhang,et al.3,4-Dinitro-furazanfuroxan explosive:CN,0210.7[P]:2002.
[7] LIU Ning, LIAN Peng, et al. Synthesis,Characterization and performance of difurazanopyrazine derivatives[J]. Chinese Journal of Energetic Materials, 2014, 22(4):473-477.
[8] ZHOU Yan-shui, WANG Xi-jie, et al. Crystal structure of benzotrifuroxan[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2012, 35(4):26-29.
[9] WANG Ke, SHU Yuan-jie, LIU Ning, et al. Theoretical studies on structure andperformance of[1,2,5] -oxadiazolo-[3,4-d]-pyridazine-based derivatives[J]. Journal of Physical Organic Chemistry, 2017, 30(1):e3591.
[10] Frisch M J, Trucks G W, Schlegel H B, et al., Gaussian 09[M]. Revision B. 01. Wallingford:Gaussian, Inc., 2009.
[11] SHAO Yu-lin, ZHU Wei-hua, XIAO He-ming. Structure-property relationships of energetic nitrogen-rich salts composed of triaminoguanidinium or ammonium cation and tetrazole-based anions[J]. Journal of Molecular Graphics and Modelling, 2013, 40:54-63.
[12] Keshavarz M H. Prediction method for specific impulse used as performance quantity for explosives[J]. Propellants, Explosives, Pyrotechnics, 2008, 33:360-364.
[13] LI Meng, ZHAO Feng-qi, et al. Comparison of three kinds of energy calculation programs in formulation design of solid propellants[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2013, 36(3):73-77.
[14] Keshavarz M H. Prediction method for specific impulse used as performance quantity for explosives[J]. Propellants, Explosives, Pyrotechnics, 2008, 33:360-364.
[15] LIN He,CHEN Peng-wan,ZHU Shun-guan, et al. Theoretical studies on the thermodynamic properties, density, detonation properties, and pyrolysis mechanisms of trinitromethyl-substituted aminotetrazoole compounds[J]. Journal of Molecular Modeling, 2013, 19(6):2413-2422.
[16] Keshavarz M H, Pouretedal H R. Predicting the detonation velocity of CHNO explosives by a simple method[J]. Propellants, Explosives, Pyrotechnics, 2005, 30(2):105-108.
[17] Kuo K K, Acharya R. Applications of Turbulent and Multi-Phase Combustion[M].[S.l.]:Wiley, 2012:52.
[18] Fan X W, Ju X H, Xiao H M, et al. Theoretical studies on heats of formation, group interaction, and bond dissociation energies in neopentyldifluoroamino compounds[J]. Journal of Molecular Structure(THEOCHEM), 2006, 801(1/3):55-62.
[19] MA Cong-ming, HUO Ke-hui, LIU Zu-liang, et al. Quantum chemistry study on the structures and detonation properties for nitro derivatives of pyrido-dicycloureas[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015, 38(6):32-38.

相似文献/References:

[1]马海霞,宋纪蓉,肖鹤鸣,等.3,4-二硝基呋咱基氧化呋咱(DNTF)的密度泛函理论研究[J].火炸药学报,2006,29(3):43.
[2]周素芹,居学海,肖鹤鸣,等.四唑与水二聚体相互作用的理论研究[J].火炸药学报,2005,28(4):1.
[3]熊 鹰,舒远杰,王新锋,等.四嗪类高氮化合物结构对热分解机理影响的理论研究[J].火炸药学报,2008,31(1):1.
[4]徐杨森,卢专,王明良,等.推进剂燃烧产物热力学性质的理论计算[J].火炸药学报,2008,31(6):65.
[5]李志敏,严英俊,冀慧莹,等.苦味酸含能离子盐的结构、生成热及爆炸性能理论研究[J].火炸药学报,2009,32(6):6.
[6]王国青,吴玉凯,侯庆伟,等.硫酸自由基与TNT反应的密度泛函理论[J].火炸药学报,2010,33(2):10.
 WANG Guo-qing,WU Yu-kai,HOU Qing-wei,et al.A Density Functional Theory of the Reaction of TNT with Sulfate Radical[J].,2010,33(3):10.
[7]徐文,翟高红,丁黎,等.NH3和ClO3对RDX初始热裂解的影响[J].火炸药学报,2010,33(2):69.
 XU Wen,ZHAI Gao-hong,DING Li,et al.Effects of NH3 and ClO3 on the Initial Pyrolysis of 1,3,5-Trinitro-1,3,5-triazine[J].,2010,33(3):69.
[8]白林,胡银,胡荣祖,等.用密度泛函理论研究LAX-112与氟化氢分子间的相互作用[J].火炸药学报,2010,33(6):19.
 BAI Lin,HU Yin,HU Rong-zu,et al.Interaction between 3,6-Diamino-1,2,4,5-tetrazine-1,4-di-N-oxide and Hydrogen Fluoride by DFT[J].,2010,33(3):19.
[9]来蔚鹏,廉鹏,常海波,等.5′-氧化偶氮双(4-硝基-1,2,3三唑-1-)氧化呋咱的理论研究与性能预估[J].火炸药学报,2011,34(1):15.
 LAI Wei-peng,LIAN Peng,CHANG Hai-bo,et al.Theoretical Study and Prediction of Properties for  5,5′-Azoxy-bis(4-nitro-1,2,3-triazol-1-yl)-furoxan[J].,2011,34(3):15.
[10]尹东光,高文亮,张彩霞,等.偏二甲肼分子化学键解离能的理论计算[J].火炸药学报,2011,34(3):83.
 YIN Dong-guang,GAO Wen-liang,ZHANG Cai-xia,et al.Theoretical Calculation of Bond Dissociation Energies for Unsymmetrical Dimethylhydrazine[J].,2011,34(3):83.

备注/Memo

备注/Memo:
收稿日期:2017-05-05;改回日期:2017-07-02。
基金项目:National Natural Science(No.51373159);Funds for International Cooperation and Exchange(No.51511130036)
作者简介:王可(1991-),male,research field:theoritical design of energetic materials.E-mail:zhuazhangmangxiewk@163.com
通讯作者:庞维强(1979-),male,Dr.,research field:design and simulation of propellants.E-mail:7697111103@qq.com
更新日期/Last Update: 1900-01-01