|本期目录/Table of Contents|

[1]李蓉,甘强,于谦,等.LLM-105晶体形貌分子动力学模拟[J].火炸药学报,2018,41(3):223-229.[doi:10.14077/j.issn.1007-7812.2018.03.002]
 LI Rong,GAN Qiang,YU Qian,et al.Molecular Dynamics Simulation on Crystal Morphology of LLM-105[J].,2018,41(3):223-229.[doi:10.14077/j.issn.1007-7812.2018.03.002]
点击复制

LLM-105晶体形貌分子动力学模拟()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第3期
页码:
223-229
栏目:
出版日期:
2018-06-29

文章信息/Info

Title:
Molecular Dynamics Simulation on Crystal Morphology of LLM-105
作者:
李蓉 甘强 于谦 程年寿 冯长根
1. 北京理工大学爆炸科学与技术国家重点实验室, 北京 100081;
2. 中国工程物理研究院化工材料研究所, 四川 绵阳 621999
Author(s):
LI Rong GAN Qiang YU Qian CHENG Nian-shou FENG Chang-gen
1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
2. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang Sichuan 621999, China
关键词:
1-氧-26-二氨基-35-二硝基吡嗪LLM-105二甲基亚砜(DMSO)平衡形态法晶体生长法修正附着能
Keywords:
26-diamino-35-dinitropyrazine-1-oxideLLM-105dimethyl sulfoxide (DMSO)equilibrium mmorphology methodcrystal growth methodmodified attachment energy
分类号:
TJ55;O79
DOI:
10.14077/j.issn.1007-7812.2018.03.002
文献标志码:
-
摘要:
为了研究在真空和溶剂二甲基亚砜(DMSO)条件下,1-氧-2,6-二氨基-3,5-二硝基吡嗪(LLM-105)的晶体生长形貌,采用分子动力学模拟方法构建了LLM-105在DMSO溶剂中“双层结构”模型,采用平衡形态法和晶体生长法预测了真空中LLM-105的晶体形貌,通过修正附着能分析了DMSO环境下LLM-105的主要控制晶面及其生长速率;通过径向分布函数和晶面结构分析不同晶面与DMSO之间的相互作用;分析了LLM-105粒子的成核能垒。结果表明,LLM-105晶体的4个主要生长晶面为(0 1 1)、(0 2 0)、(1 1 0)和(1 0 -1),其中(0 2 0)、(0 1 1)晶面为控制晶面;加入溶剂DMSO后,修正附着能分析得出溶剂中4个晶面附着能远小于真空条件下,说明选择合适的极性溶剂有助于抑制爆发式成核,控制LLM-105的晶体形貌,其中(0 1 1)晶面线性生长速率最小;径向分布函数和晶面结构分析表明,DMSO中H原子与LLM-105(0 1 1)晶面中N原子之间具有较强的氢键和范德华力相互作用;扩散系数分析表明,修正附着能随溶剂扩散系数的增大而减小,溶剂DMSO在(0 1 1)晶面上扩散系数最大,导致该晶面成核能垒高,不容易聚集成核。
Abstract:
To study the crystal growth morphology of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) under the condition of vacuum or solvent dimethyl sulfoxide (DMSO), the double layer structure model of LLM-105 in DMSO solvent was constructed by the molecular dynamics simulation method. The equilibrium morphology method and crystal growth morphology were used to predict the crystal morphology of LLM-105 in vacuum. The main control crystal surface and its growth rate of LLM-105 in DMSO environment were analyzed by modified attachment energy. The interaction between different crystal surfaces and DMSO was analyzed by radial distribution function and surface structure.The nucleation energy barrier of LLM-105 particles was analyzed. The results show that four main growth surfaces of LLM-105 crystal are (0 1 1), (0 2 0), (1 1 0) and (1 0 -1), of which, (0 2 0) and (0 1 1) crystal surfaces are the controlled crystal surfaces. After adding solvent DMSO, the modified attachment energy is analyzed to find that the attachment energy of four crystal surfaces in solvent is far smaller than that in the vacuum condition. It is suggested that the appropriate polar solvent can help to suppress explosive nucleation and control the morphology of LLM-105 crystal, of which the linear growth rate of (0 1 1) crystal surface is the smallest. The analyses of radial distribution function and crystal surface structure show that there are strong hydrogen bond and van der Waals interactions between H atoms of DMSO and N atoms of LLM-105 (0 1 1) surface. The analysis of diffusion coefficient shows that, the modified attachment energy decreases with the increase of solvent diffusion coefficient, and the maximum diffusion coefficient of solvent DMSO on (0 1 1) crystal surface is observed, which results in the high nucleation barrier of (0 1 1) surface and not easy to aggregate nucleation.

参考文献/References:

[1] Pagoria P F. Synthesis, scale-up, and characterization of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105)[J]. Propellants, Explosives, Pyrotechnics, 1998, 23:156-160.
[2] 周杰文, 张创军, 王友兵,等. 耐热炸药的现状及研究进展[J]. 兵器装备工程学报, 2016, 37(3):111-115. ZHOU Jie-wen, ZHANG Chuang-jun, WANG You-bing, et al. Status and research progress of heat resistant explosives[J]. Jounal of Ordance Equipment Engineering, 2016, 37(3):111-115.
[3] He W D, Zhou G, Wong N B, et al. Intramolecular H-bonds in LLM-105 and its derivatives:a DFT study[J]. Journal of Molecular Structure:Theochem, 2005, 723(1/3):217-222.
[4] 李海波, 程碧波, 刘世俊, 等. LLM-105重结晶与性能研究[J]. 含能材料, 2008, 16(6):686-688. LI Hai-bo,CHENG Bi-bo, LIU Shi-jun, et al. Recrystallization and properties of LLM-105[J]. Chinese Journal of Energetic Materials, 2008, 16(6):686-688.
[5] Zhang J, Wu P, Yang Z, et al. Preparation and properties of submicrometer-sized LLM-105 via spray-crystallization method[J].Chinese Journal of Energetic Materials, 2015, 39(5):653-657.
[6] 庄小博, 黄兵, 高冰, 等. 纳米LLM-105自组装制备矩形微米棒[J]. 含能材料, 2016, 24(5):433-438. ZHUANG Xiao-bo, HUANG Bing, GAO Bing, et al. Preparation of rectangular micro-rods nano-LLM-105 self-assembly[J]. Chinese Journal of Energetic Materials, 2016, 24(5):433-438.
[7] 徐容, 廖龙渝, 王述存, 等. 重结晶方法对2,6-二氨基-3,5-二硝基吡嗪-1-氧化物晶体特性及性能影响[J]. 兵工学报, 2015, 36(11):2099-2103. XU Rong, LIAO Long-yu, WANG Shu-cun, et al. Influence of recryztallization method on crystal properties and performance of LLM-105[J]. Acta Amamentarii, 2015, 36(11):2099-2013.
[8] 李媛, 黄凤臣, 王友兵, 等. 细颗粒LLM-105的制备及粒度控制技术研究[J]. 火工品, 2017(1):34-37. LI Yuan, HUANG Feng-chen, WANG You-bing, et al. Preparation and research on particle size control of LLM-105[J]. Initiators & Pyrotechnics, 2017(1):34-37.
[9] 汤崭, 杨利, 乔小晶, 等. HMX晶体形貌的计算模拟[J]. 火炸药学报, 2009, 32(4):10-13. TAN Zhan, YANG Li, QIAO Xiao-jing, et al. Calculated simulation of the crystal morphology of HMX[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2009, 32(4):10-13.
[10] Gibbs J W. On the equilibrium of heterogeneous substances[J]. Transactions of the Connecticut Academy of Arts and Sciences, 1878, 3:441-458.
[11] Hartman P, Chan H K. Application of the periodic bond chain (PBC) theory and attachment energy consideration to derive the crystal morphology of hexamethylmelamine[J]. Pharmaceutical Research, 1993, 10(7):1052-8.
[12] Liu Jinjian, Liu Zuliang, Cheng Jian, et al. Synthesis, crystal structure and catalytic properties of 2,6-diamino-3,5-dinitropyridine -1-oxide coblat(Ⅲ)[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(2):289-294.
[13] 石文艳, 王风云, 夏明珠,等. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物晶体形貌的MD模拟[J]. 含能材料, 2016, 24(1):19-26. SHI Wen-yan,WANG Feng-yun, XIA Ming-zhu,et al.Molecular dynamics simulation on the crystal morpholoqy of 2,6-diamino-3,5-dinitropyridine-1-oxide[J].Chinese Journal of Energetic Materials,2016,24(1):19-26.
[14] 肖继军,朱卫华,朱伟, 等.高能材料分子动力学[M].北京:科学出版社, 2013.
[15] 杨利, 任晓婷, 严英俊, 等. 六硝基茋的晶体结构及形貌模拟[J]. 火炸药学报, 2009, 32(6):1-5. YANG Li, REN Xiao-ting, YAN Ying-jun, et al. Crystal structure and morphology simulation of HNS[J]. Chinese Journal of Explosives and Propellants(Huozhayao Xuebao), 2009, 32(6):1-5.
[16] 任晓婷, 杨利, 张国英, 等. TATB晶体形貌的计算模拟[J]. 火炸药学报, 2010, 33(6):43-46. REN Xiao-ting, YANG Li, ZHANG Guo-ying, et al. Computional simulation of the crystal morphology of TATB[J]. Chinese Journal of Explosives and Propellants(Huozhayao Xuebao), 2010, 33(6):43-46.
[17] 何前军, 黄志良, 张联盟. 氢键影响羟基磷灰石结晶形态的理论模型研究[J]. 人工晶体学报, 2006, 35(1):147-151. HE Qian-jun, HUANG Zhi-liang, ZHANG Lian-meng. Study on the model of crystal morphology of synthesized hydroxyapatite affected by hydrogen bond[J]. Journal of Synthetic Crystals, 2006, 35(1):147-151.
[18] Donnay J D H, Harker D. A new law of crystal morphology extending the law of bravais[J]. American Mineralogist, 1938, 22:446-467.
[19] 段晓惠, 卫春雪, 裴重华,等. HMX晶体形貌预测[J]. 含能材料, 2009, 17(6):655-659. DUAN Xiao-hui, WEI Chun-xue,PEI Chong-hua, et al. Prediction of crystal morphology of HMX[J]. Chinese Journal of Energetic Materials, 2009, 17(6):655-659.
[20] Haesslin H W. Dimethylsiloxane-ethylene oxide block copolymers, 2. Preliminary results on dilute solution properties[J]. Macromolecular Chemistry & Physics, 1985, 186(2):357-366.
[21] 曹强. CL-20/TNT共晶、RDX缺陷晶体及其复合体系结构与性能的MD模拟研究[D]. 南京:南京理工大学, 2015. CAO Qiang. Molecular dynamics simulation study on the structure and performance of CL-20/TNT cocrystal/RDX defective crystal and their composite materials[D]. Nanjing:Nanjing University of Science and Technology, 2015.
[22] 庄小博. 典型不敏感炸药纳米颗粒的自组装研究[D]. 绵阳:西南科技大学, 2016. ZHUANG Xiao-bo. Self-assembly of a typical insensitive explosive nanoparticles[D]. Mianyang:Southwest University of Science and Technology, 2016.
[23] 李红霞, 强洪夫, 王广, 等. 基于MD方法的增塑剂扩散行为的模拟研究[J]. 含能材料, 2009, 17(1):36-41. LI Hong-xia, QIANG Hong-fu, WANG Guang, et al. Molecular dynamics simulation of plasticizer diffusion[J]. Chinese Journal of Energetic Materials, 2009, 17(1):36-41.

相似文献/References:

[1]郭峰波,刘玉存,刘登程,等.2,6-二氨基-3,5-二硝基-1-氧吡嗪合成工艺优化[J].火炸药学报,2006,29(1):17.
[2]成健,刘祖亮,姚其正,等.2-氨基-3,5-二硝基吡啶-1-氧化物的氧化胺化反应[J].火炸药学报,2009,32(5):5.
 CHENG Jian,LIU Zu liang,YAO Qi zheng,et al.Oxidative Amination of 2-Amino-3,5-dinitropyridine-1-oxide[J].,2009,32(3):5.
[3]何志伟,高大元,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物及其黏结炸药的热分解动力学[J].火炸药学报,2009,32(2):32.
 HE Zhi wei,GAO Da yuan,LIU Zu liang.[J].,2009,32(3):32.
[4]郁晓宇,陆明,聂福德.二氨基-3,5-二硝基-1-氧吡嗪合成工艺的改进[J].火炸药学报,2012,35(2):10.
 YU Xiao-yu,LU Ming,NIE Fu-de.Improvement of the Synthesis Process of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide[J].,2012,35(3):10.
[5]赵晓锋,刘祖亮,姚其正,等.2,6-二氨基-3,5-二硝基吡嗪-1-氧化物的合成[J].火炸药学报,2012,35(3):15.
 ZHAO Xiao-feng,LIU Zu-liang,YAO Qi-zheng,et al.Synthesis of 2,6-Diamino-3,5-dinitropyrazine-1-oxide[J].,2012,35(3):15.
[6]何志伟,刘祖亮.2,6-二氨基-3,5-二硝基吡啶-1-氧化物和RDX基PBX的制备与表征[J].火炸药学报,2013,36(1):21.
 HE Zhi-wei,LIU Zu-liang.Preparation and Characterization of 2,6-Diamino-3,5-dinitropyridine 1-oxide and RDX-based Polymer Binder Explosives[J].,2013,36(3):21.
[7]李勤华,姚凯,郁晓宇,等.2, 6-二甲氧基-3, 5-二硝基吡嗪的硝化工艺研究[J].火炸药学报,2014,37(2):27.
 LI Qin-hua,YAO Kai,YU Xiao-yu,et al.Study on Nitration Technology of 2,6-Diamino-3,5-dinitropyrazine[J].,2014,37(3):27.
[8]刘进剑,刘祖亮,成健.含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶体结构及催化性能[J].火炸药学报,2014,37(3):11.
[9]刘进剑,刘祖亮,成健.2,6-二氨基-3,5-二硝基吡啶-1-氧化物Ni(II)和Cu(II)含能配合物的燃烧催化性能[J].火炸药学报,2015,38(5):63.[doi:10.14077/j.issn.10077812.2015.05.013]
 LIU Jin-jian,LIU Zu-liang,CHENG Jian.Combustion Catalytic Performance of Energetic Ni(II) and Cu(II) Complexes of 2,6-Diamino-3,5-dinitropyridine-1-oxide[J].,2015,38(3):63.[doi:10.14077/j.issn.10077812.2015.05.013]
[10]张蒙蒙,王友兵,周杰文,等.2,6-二氨基-3,5-二硝基吡啶-1-氧化物的精制新方法[J].火炸药学报,2017,40(1):28.[doi:10.14077/j.issn.1007-7812.2017.01.006]
 ZHANG Meng-meng,WANG You-bing,ZHOU Jie-wen,et al.A New Method for Refining 2,6-Diamino-3,5-dinitropyridine-1-oxide[J].,2017,40(3):28.[doi:10.14077/j.issn.1007-7812.2017.01.006]

备注/Memo

备注/Memo:
收稿日期:2018-01-29;改回日期:2018-04-09。
基金项目:国家自然科学基金(No.21703216)
作者简介:李蓉(1993-),女,硕士研究生,从事含能材料的分子动力学模拟研究。E-mail:lr3682471@163.com
通讯作者:冯长根(1953-),男,博导,教授,从事军事化学烟火技术研究。E-mail:cgfeng@cast.org.cn
更新日期/Last Update: 1900-01-01