|本期目录/Table of Contents|

[1]张路,余瑞,邓康清,等.一种固体推进剂药柱结构完整性的快速评估方法[J].火炸药学报,2018,41(2):178-185.[doi:10.14077/j.issn.1007-7812.2018.02.013]
 ZHANG Lu,YU Rui,DENG Kang-qing,et al.A Rapid Assessment Method of the Structural Integrity of Solid Propellant Grain[J].,2018,41(2):178-185.[doi:10.14077/j.issn.1007-7812.2018.02.013]
点击复制

一种固体推进剂药柱结构完整性的快速评估方法()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第2期
页码:
178-185
栏目:
出版日期:
2018-04-27

文章信息/Info

Title:
A Rapid Assessment Method of the Structural Integrity of Solid Propellant Grain
作者:
张路 余瑞 邓康清 庞爱民 杨玲
湖北航天化学技术研究所, 湖北 襄阳 441003
Author(s):
ZHANG Lu YU Rui DENG Kang-qing PANG Ai-min YANG Ling
Hubei Institute of Aerospace Chemotechnology, Xiangyang Hubei 441003, China
关键词:
推进剂药柱固化降温点火增压等效模量结构完整性
Keywords:
propellant graincuring and coolingignition pressurizationequivalent modulusstructural integrity
分类号:
TJ55;V438
DOI:
10.14077/j.issn.1007-7812.2018.02.013
文献标志码:
-
摘要:
为了实现固体推进剂药柱结构完整性的快速评估,首先从推进药柱的动态模量入手,建立了一种动态载荷作用下药柱等效模量快速实时评估方法;然后提出了温度应变系数和压力应变系数的概念,建立了动态载荷工况下药柱等效应变和等效应力的计算模型,可得到药柱内部危险位置在各个时刻的等效应变、等效应力的变化情况;并与基于线黏弹性理论的有限元模拟计算结果进行了对比。结果表明,两种计算方法得到的3种固化降温曲线下,药柱危险位置的等效应变和等效应力的最大差值分别为4.60%、4.74%;3种点火增压曲线下药柱危险位置的等效应变和等效应力的最大差值分别为1.93%和1.23%;且该评估方法计算所需时间大大减少,可用于固体推进剂药柱结构完整性的快速评估。
Abstract:
To realize the rapid assessment of the structural integrity of solid propellant grain, starting with the dynamic modulus of propellant grain, a fast real-time assessment method for the equivalent modulus of solid propellant grain under dynamic load condition is established. Then, the concepts of temperature strain coefficient and pressure strain coefficient are put forward, a calculation model of the equivalent strain and equivalent stress of grain under dynamic load condition is set up, and the change of equivalent strain and equivalent stress of the dangerous position of grain at all times can be obtained, and the results are compared with finite element simulation ones based on linear viscoelasticity theory. The results show that the maximum difference between the equivalent strain and the equivalent stress of the dangerous position of grain under three kinds of curing cooling curves obtained by two calculation methods are 4.60% and 4.74%, respectively and the maximum difference between the equivalent strain and the equivalent stress of the dangerous position of grain obtained by two calculation methods under ignition pressurization curves are 1.93% and 1.23%, respectively and the time required for the assessment method is greatly reduced, so the assessment method can be used for rapid assessment of structural integrity analysis of solid propellant grain.

参考文献/References:

[1] Salita M. Modern SRM ignition transient modeling.I. introduction and physical models[C]//37th AIAA Joint Propulsion Conference & Exhibit. Salt Lake City:American Institute of Aeronautics and Astronautics, 2001:2001-3443.
[2] Bohwi S, Jaehoon K. Estimation of master curves of relaxation modulus and tensile properties for solid propellant[J]. Advanced Materials Research, 2014, 871:247-252.
[3] Lees S, Knauss W G. A note on the determination of the relaxation and creep data from ramp tests[J]. Mechanics of Time-dependent Materials, 2000(4):1-7.
[4] Sorvari J,Malinen M. On the direct estimation of creep and relaxation functions[J]. Mechanics of Time-dependent Materials, 2007(11):143-157.
[5] 许进升,鞠玉涛,郑健,等.复合固体推进剂松弛模量的获取方法[J].火炸药学报,2011,34(5):58-62. XU Jin-sheng, JU Yu-tao, ZHENG Jian, et al. Acquisition of the relaxation modulus of composite solid propellant[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2011, 34(5):58-62.
[6] Adel W M, Liang Guo zhu. Different methods for developing relaxation modulus master curves of AP-HTPB solid propellant[J].Chinese Journal of Energetic Materials,2017,25(10):810-816.
[7] Husband D M. Use of dynamic mechanical measurements to determine the behavior of solid propellant[J]. Propellants, Explosives, Pyrotech, 1992, 17:196-201.
[8] 张昊,庞爱民,彭松.固体推进剂贮存寿命非破坏性评估方法(Ⅱ)-动态力学性能主曲线监测法[J].固体火箭技术,2006,9(3):190-194. ZHANG Hao, PANG Ai-min, PENG Song. Nondestructive assessment approaches to storage life of solid propellants(Ⅱ)-master curve of dynamic mechanical property surveillance method[J]. Journal of Solid Rocket Technology, 2006, 9(3):190-194.
[9] Lajczok M R. Effective propellant modulus approach for solid rocket motor ignition structural analysis[J]. Computers & Structures,1995,56(1):101-110.
[10] 于洋,王宁飞,张平.温度载荷下带筋套管形装药结构完整性分析[J].推进技术,2006,27(6):492-496. YU Yang, WANG Ning-fei, ZHANG Ping. Structural integrity analysis for the canular solid propellant grains subjected to temperature loading[J]. Journal of Propulsion Technology, 2006, 27(6):492-496.
[11] Bin Deng, Yan Xie, Guo Jin tang. Three-dimensional structural analysis approach for aging composite solid propellant grains[J]. Propellants, Explosives, Pyrotech, 2014, 39:117-124.
[12] Shiang-Woei Chyuan. Nonlinear thermoviscoelastic analysis of solis propellant grains subjected to temperature loading[J]. Finite Elements in Analysis and Design, 2002, 38(7):613-630.
[13] Nikam T, Pardeshi M,Patil A, et al. Structural integrity analysis of propellant in solid rocket motor[J]. International Conference on Ideas, Impact and Innovation in Mechanical Engineering, 2017, 5(6):896-902.
[14] 鲍福廷,侯晓.固体火箭发动机设计[M].北京:中国宇航出版社,2016,1:400-403.
[15] 王元有,胡克娴,蔡湘芬,等.固体火箭发动机设计[M].北京:国防工业出版社,1984.

相似文献/References:

[1]程春扬.大型制品成型新工艺——螺旋挤压模铸工艺[J].火炸药学报,1992,15(1):26.

备注/Memo

备注/Memo:
收稿日期:2018-01-14;改回日期:2018-03-09。
基金项目:湖北省技术创新重大专项(No.2016ACA180)
作者简介:张路(1991-),男,硕士研究生,从事固体推进剂药柱结构完整性分析。E-mail:zhanglu42s@163.com
更新日期/Last Update: 1900-01-01