|本期目录/Table of Contents|

[1]崔子祥,甘俊珍,范杰,等.Zr(BHT)2高能钝感燃烧催化剂的合成及热分解行为[J].火炸药学报,2018,41(2):165-172.[doi:10.14077/j.issn.1007-7812.2018.02.011]
 CUI Zi-xiang,GAN Jun-zhen,FAN Jie,et al.Synthesis and Thermal Decomposition Behavior of Zr(BHT)2 High Energy Insensitive Combustion Catalyst[J].,2018,41(2):165-172.[doi:10.14077/j.issn.1007-7812.2018.02.011]
点击复制

Zr(BHT)2高能钝感燃烧催化剂的合成及热分解行为()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第2期
页码:
165-172
栏目:
出版日期:
2018-04-27

文章信息/Info

Title:
Synthesis and Thermal Decomposition Behavior of Zr(BHT)2 High Energy Insensitive Combustion Catalyst
作者:
崔子祥 甘俊珍 范杰 赵凤起 薛永强 肖立柏
1. 西安近代化学研究所燃烧与爆炸技术重点实验室, 陕西 西安 710065;
2. 太原理工大学应用化学系, 山西 太原 030024
Author(s):
CUI Zi-xiang GAN Jun-zhen FAN Jie ZHAO Feng-qi XUE Yong-qiang XIAO Li-bai
1. Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
2. Department of Applied Chemistry, Taiyuan University of Technology, Taiyuan 030024, China
关键词:
燃烧催化剂Zr (BHT)2高能钝感动力学热力学络合沉淀法
Keywords:
combustion catalystZr (BHT)2high energy insensitivekineticsthermodynamicscomplexing-precipitate method
分类号:
TJ55;O643
DOI:
10.14077/j.issn.1007-7812.2018.02.011
文献标志码:
-
摘要:
以二氯乙二肟、二甲基甲酰胺、叠氮化钠、盐酸羟胺和硝酸锆等为原料,采用络合沉淀法合成了高能钝感的Zr(BHT)2燃烧催化剂;利用差示扫描量热法(DSC)和热重法(TG)研究了不同升温速率下Zr(BHT)2的热分解性能;分别利用Ozawa法和Kissinger法计算其表观活化能(EOEK)和指前因子(Ak),得到其热分解动力学参数、热分解机理函数、热爆炸温度和热力学性质;测试了其撞击感度和摩擦感度。结果表明,Ozawa法和Kissinger法计算得到Zr(BHT)2的表观活化能分别为150.51和152.15 kJ/mol,热分解过程符合Avrami-Erofeev方程;自加速分解温度和热爆炸临界温度分别为497.63和530.71 K;热分解自由能(ΔG)为122.04 kJ/mol,活化焓(ΔH)为147.88 kJ/mol,活化熵(ΔS)为50.27 J/mol。感度测试结果表明,Zr(BHT)2燃烧催化剂对撞击和摩擦均钝感,安全性较高。
Abstract:
High energy insensitive combustion catalyst Zr(BHT)2 was synthesized by complexing-precipitate method using dichloro ethylene dioxime, dimethylformamide, sodium azide, hydroxylamine hydrochloride and zirconium nitrate as raw materials. The thermal decomposition properties of Zr(BHT)2 were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG) at different heating rates. The apparent activation energies (EK and EO) and pre-exponential constant (Ak) were calculated by Ozawa’s method and Kissinger’s method. The kinetic parameters and mechanism function of thermal decomposition, thermal explosion temperature and thermodynamic parameters were obtained, and the impact sensitivity and friction sensitivity were measured. The results show that the apparent activation energies of Zr(BHT)2 by Ozawa and Kissinger’s method were 150.51 and 152.15 kJ/mol, respectively, and the thermal decomposition is in accordance with Avrami-Erofeev equation. The self-accelerating decomposition temperature and the critical temperature of thermal explosion are 497.63 and 530.71 K, respectively. The free energy of activation of thermal decomposition reaction (ΔG) is 122.04 kJ/mol, the enthalpy of activation (ΔH) is 147.88 kJ/mol, and entropy of activation (ΔS) is 50.27 J/mol. The sensitivity test results also show that Zr(BHT)2 combustion catalyst is insensitive to impact and friction, and the safety is relatively high.

参考文献/References:

[1] 董海山. 高能量密度材料的发展及对策[J]. 含能材料, 2004, 12(1):1-12. DONG Hai-shan. The development and countermeasure of high energy density materials[J]. Chinese Journal of Energetic Materials, 2004; 12(1):1-12.
[2] Li Yu-chuan, Cai Qi, Li Sheng-hua, ZHANG Cai, et al. 1, 1’-Azobis-1,2,3-triazole:a high-nitrogen compound with stable N8 structure and photochromism[J]. Journal of the American Chemical Society, 2010, 132:12172-12175.
[3] Jaidann M, Roy S, Abou-Rachid H, et al. A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives[J]. Journal of Hazardous Materials, 2010, 176(1):165-173.
[4] Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications[J]. Journal of Hazardous Materials, 2004, 112(1):1-15.
[5] You J S, Kang S C, Kweon S K, et al. Thermal decomposition kinetics of GAP ETPE/RDX-based solid propellant[J]. Thermochimica Acta, 2012, 537:51-56.
[6] Li N, Zhao F, Luo Y, et al. Dissolution properties of 3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine in N-methyl pyrrolidone and dimethyl sulfoxide[J]. Journal of Solution Chemistry, 2014, 43(7):1250-1258.
[7] Li S H, Shi H G, Sun C H, et al. Synthesis and crystal structure of nitrogen-rich compound:2,5,20-triazido-1,10-azo-1,3,4-triazole[J]. J Therm Anal Calorim, 2009, 39:13-16.
[8] Klapötke T M, Piercey D G. 1,1’-Azobis(tetrazole):a highly energetic nitrogen-rich compound with a N10 chain[J]. Inorganic Chemistry, 2011, 50(7):2732-2734.
[9] Ghule V D, Jadhav P M, Tewari S P. Theoretical studies on nitrogen rich energetic azoles[J]. Journal of Molecular Modeling, 2011, 17(6):1507-1515.
[10] Loebbecke S, Schuppler H, Schweikert W. Thermal analysis of the extremely nitrogen-rich solids BTT and DAAT[J]. Journal of Thermal Analysis & Calorimetry, 2003, 72(2):453-463.
[11] Gao H, Shreeve J M. Azole-based energetic salts[J]. Chemical Reviews, 2011, 111(11):7377-436.
[12] 黄海丰, 周智明. 基于有机阴离子的含能离子盐研究进展[J]. 火炸药学报, 2012, 35(3):1-10. HUANG Hai-feng, ZHOU Zhi-ming. Based on organic anion can contain ionic salt research progress[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2012, 35(3):1-10.
[13] Wang Y L, Zhao Q, Jian-Hua Y I. New progress of study on combustion catalysts used for solid rocket propellants[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2012, 35(5):1-8.
[14] Song X D, Zhao F Q, Chen P. Advance on lead-free combustion catalysts for solid rocket propellant[J]. Energetic Materials, 2004.
[15] 张国涛, 周遵宁, 张同来,等. 固体推进剂含能催化剂研究进展[J]. 固体火箭技术, 2011,(3):319-323. ZHANG Guo-tao, ZHOU Zun-ning, ZHANG Tong-lai. Solid propellant containing catalyst research progress[J]. Journal of Solid Rocket Technology, 2011, (3):319-323.
[16] 毕福强, 樊学忠, 许诚,等. 1,1’-二羟基-5,5’-联四唑的合成及理论研究[J]. 火炸药学报, 2013, 36(4):22-25. BI Fu-qiang, FAN Xue-zhong, XU Cheng. 1, 1’-Dihydroxy -5,5’-al tetrazolium synthesis and theory research[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2013, 36(4):22-25.
[17] 邓敏智, 杜恒, 赵凤起,等. 四唑类盐的制备及其在固体推进剂中的应用初探[J]. 固体火箭技术, 2003, 26(3):53-54. DENG Min-zhi, DU Heng, ZHAO Feng-qi, et al. Preparation of tetrazolium salt and its application in solid propellant[J]. Journal of Solid Rocket Technology, 2003, 26(3):53-54.
[18] 赵凤起, 陈沛, 李上文. 四唑类化合物的金属盐作为微烟推进剂燃烧催化剂的研究[J]. 兵工学报, 2004, 25(1):30-33. ZHAO Feng-qi, CHEN Pei, LI Shang-wen. Tetrazole compounds of metal salts as the smoke propellant combustion catalyst research[J]. Acta Armamentarii, 2004, 25(1):30-33.
[19] Boneberg F, Kirchner A, Klapötke T M, et al.A study of cyanotetrazole oxides and derivatives thereoy[J]. Chemistry-An Asian Journal, 2013, 8(1):148-159.
[20] Fischer D, Klapötke T M, Piercey D G,et a1.Synthe-sis of 5-aminotetrazole-1 N-oxide and its azo derivative:a key step in the development of new energetic materi als[J].Chemistry,2013,19(14):4602-4613.
[21] 柴玉萍, 张同来, 姚俊. 双四唑盐的合成及表征[J]. 固体火箭技术, 2007, 30(3):248-252. CHAI Yu-ping, ZHANG Tong-lai, YAO Jun. Synthesis and characterization of bitetrazole salts[J]. Journal of Solid Rocket Technology, 2007, 30(3):248-252.
[22] 王鹏程, 王杰群, 陆明,等. 1,1’-二羟基-5,5’-联四唑金属盐的制备及热分解动力学[J]. 含能材料, 2016, 24(6):538-543. WANG Peng-cheng, WANG Jie-qun,LU Ming, et al. A kinetic investigation of thermal decomposition of 1,1’-dihydroxy-5,5’-bitetrazole-based metal salts[J]. Chinese Journal of Energetic Materials, 2016, 24(6):538-543.
[23] 黄海丰, 杨军, 杨普,等. 四水合1,1’-二羟基-5,5’-联四唑钠盐的合成、晶体结构及性能[J]. 含能材料, 2014, 22(4):462-466. HUANG Hai-feng, YANG Jun, YANG Pu, et al. Synthesis, crystal structure and properties of sodium 5, 5’-bistetrazole-1, 1’-diolate tetrahydrate[J]. Chinese Journal of Energetic Materials, 2014, 22(4):462-466.
[24] 梁丽轩,周智明.钝感高能含能离子盐的研究进展[J]. 火炸药学报, 2014, 37(1):1-11. LIANG Li-xuan, ZHOU Zhi-ming. The research progress of insensitive high energy can contain ionic salt[J].Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2014, 37(1):1-11.
[25] 张衡, 赵凤起, 张晓宏,等. 3-硝基邻苯二甲酸锆的制备及其对双基系推进剂的催化作用[J]. 火炸药学报, 2009, 32(1):1-4. ZHANG Heng, ZHAO Feng-qi, ZHANG Xiao-hong, et al. 3-Nitro phthalic acid preparation of zirconium and its catalysis on department of double-base propellant[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2009, 32(1):1-4.
[26] 陈竚, 张佩, 张晓宏,等. ZrO2和ZrB2在螺压双基推进剂中的应用[J]. 含能材料, 2013, 21(1):53-56. CHEN Zhu, ZHANG Pei, ZHANG Xiao-hong. Application of ZrO2 and ZrB2 in screw extrusion double-based propellants[J]. Chinese Journal of Energetic Materials, 2013, 21(1):53-56.
[27] 赵廷兴, 田均均, 李磊,等. 5,5’-联四唑-1,1’-二氧二羟铵(TKX-50)50克量级制备放大工艺[J]. 含能材料, 2014(6):744-747. ZHAO Ting-xing, TIAN Jun-jun, LI Lei, et al. Up-sizing 50 grams-scale synthesis technology of dihydroxylammonium 5,5’-bistetrazole-1, 1’-diolate (TKX-50)[J]. Chinese Journal of Energetic Materials, 2014, 22(6):744-747.
[28] Fischer N, Izsák D, Klapötke T M, et al. Nitrogen——rich 5, 5’-bistetrazolates and their potential use in propellant systems:a comprehensive study[J]. Chemistry-A European Journal, 2012, 18(13):4051-4062.
[29] Ozawa T B. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11):1881-1886.
[30] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706.
[31] 何志伟, 高大元, 刘祖亮. 2,6-二氨基-3,5-二硝基吡啶-1-氧化物及其黏结炸药的热分解动力学[J]. 火炸药学报, 2009, 32(2):32-36. HE Zhi-wei, GAO Da-yuan, LIU Zu-liang. Thermal decomposition kinetics of 2,6-diamino-3,5-dinitropyridine 1-oxide and its formulation explosives[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2009, 32(2):32-36.
[32] 马晓明, 李斌栋, 吕春绪,等. 无氯TATB的合成及其热分解动力学[J]. 火炸药学报, 2009, 32(6):24-27. MA Xiao-ming, LI Bin-dong, Lü Chun-xu, et al. Synthesis and thermal decomposition kinetics of TATB without chloride[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2009, 32(6):24-27.
[33] Sharp J H, Wentworth S A. Kinetic analysis of thermogravimetric data[J]. Analytical Chemistry, 1969, 41(14).
[34] Liu R, Yang L, Zhou Z, et al. Thermal stability and sensitivity of RDX-based aluminized explosives[J]. Journal of Thermal Analysis & Calorimetry, 2014, 115(2):1939-1948.
[35] Liu Y, Jiang Y T, Zhang T L, et al. Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials[J]. Journal of Thermal Analysis & Calorimetry, 2015, 119(1):659-670.
[36] Yi J H, Zhao F Q, Wang B Z, et al. BTATz-HNIW-CMDB propellants:decomposition reaction kinetics and thermal safety[J]. Journal of Thermal Analysis & Calorimetry, 2014, 115(2):1227-1234.
[37] Xu K Z, Zuo X G, Zhang H, et al. Synthesis and thermal behavior of a new high-energy organic potassium saltK(AHDNE)[J]. Therm Anal Calorim, 2012,110:585-591.
[38] Zhang J Q, Ji T Z, Chao M, et al. Synthesis and thermal behaviors of 1,3-bis(4-aminophenoxy)benzene (TPER) and polyimide based on TPER and pyromellitic dianhydride[J]. Journal of Thermal Analysis & Calorimetry, 2013, 114(1):441-449.

相似文献/References:

[1]刘建民,唐少春,徐复铭,等.基于ANN的丁羟复合推进剂燃速预测[J].火炸药学报,2006,29(3):13.
[2]樊学忠,张伟,李吉祯,等.铅盐对无烟NEPE推进剂燃烧性能的影响[J].火炸药学报,2005,28(1):9.
[3]张伟,李吉祯,孙育坤,等.铜盐和碳黑对微烟NEPE推进剂燃烧性能的影响[J].火炸药学报,2005,28(3):27.
[4]秦能,汪亮,王宁飞.低燃速低燃温双基推进剂燃烧性能的调节[J].火炸药学报,2003,26(3):16.
[5]张晓宏,龙村,王铁成,等.纳米级氧化铅对双基推进剂燃烧性能影响的研究[J].火炸药学报,2002,25(2):39.
[6]刘春,李笑江,蔡炳源,等.燃烧催化剂对EMCDB推进剂交联固化反应的催化作用[J].火炸药学报,2002,25(2):42.
[7]洪伟良,赵凤起,刘剑洪,等.纳米PbO和Bi2O3粉的制备及对推进剂燃烧性能的影响[J].火炸药学报,2001,24(3):7.
[8]马凤国,季树田,吴文辉,等.纳米氧化铅为燃烧催化剂的应用研究[J].火炸药学报,2000,23(2):13.
[9]安红梅,刘云飞,李玉平,等.金属氧化物对HNIW单元推进剂燃烧的催化研究[J].火炸药学报,2000,23(4):27.
[10]张衡,赵凤起,张晓宏,等.3硝基邻苯二甲酸锆的制备及其对双基系推进剂的催化作用[J].火炸药学报,2009,32(1):1.
 ZHANG Heng,ZHAO Feng qi,ZHANG Xiao hong,et al.Preparation of Zirconium 3Nitrophthalate and Its Effect on Combustion of Doublebase Propellant and RDXCMDB Propellant[J].,2009,32(2):1.

备注/Memo

备注/Memo:
收稿日期:2017-12-19;改回日期:2018-02-03。
基金项目:国家自然科学基金(No.21573157;No.21373147)
作者简介:崔子祥(1973-),男,博士,副教授,从事纳米物理化学及含能材料研究。E-mail:zixiang2199@126.com
通讯作者:赵凤起(1963-),男,博士,博导,研究员,从事固体推进剂及含能材料研究。E-mail:zhaofqi@163.com
更新日期/Last Update: 1900-01-01