|本期目录/Table of Contents|

[1]刘雪敏,刘红利,高潮,等.国内外含能配位聚合物最新研究进展[J].火炸药学报,2018,41(2):107-116.[doi:10.14077/j.issn.1007-7812.2018.02.001]
 LIU Xue-min,LIU Hong-li,GAO Chao,et al.Latest Progress in Research on Energetic Coordination Polymers at Home and Abroad[J].,2018,41(2):107-116.[doi:10.14077/j.issn.1007-7812.2018.02.001]
点击复制

国内外含能配位聚合物最新研究进展()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
41卷
期数:
2018年第2期
页码:
107-116
栏目:
出版日期:
2018-04-27

文章信息/Info

Title:
Latest Progress in Research on Energetic Coordination Polymers at Home and Abroad
作者:
刘雪敏 刘红利 高潮 郭兆琦
1. 西安近代化学研究所, 陕西 西安 710065;
2. 西北大学化学与材料科学学院, 陕西 西安 710127;
3. 西北大学化工学院, 陕西 西安 710069
Author(s):
LIU Xue-min LIU Hong-li GAO Chao GUO Zhao-qi
1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
2. College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China;
3. School of Chemical Engineering, Northwest University, Xi’an 710069, China
关键词:
含能材料配位聚合物ECPs起爆药燃速调节剂
Keywords:
energetic materialcoordination polymerECPsprimary explosivesburning rate regulators
分类号:
TJ55;O63
DOI:
10.14077/j.issn.1007-7812.2018.02.001
文献标志码:
-
摘要:
为了阐明含能配位聚合物(Energetic Coordination Polymers,ECPs)结构与其性能的关系,分别从ECPs结构中的电荷状态和潜在应用两方面综述近几年发表的研究成果。在叙述中性离子、阳离子和阴离子ECPs时,又按照配体进行分类,综述了配位聚合物的晶体结构,及其密度、热稳定性、能量和感度等性能参数,归纳了ECPs结构与性能的关系。按照配位聚合物的结构特点和性能,探讨了其作为起爆药、炸药和燃速调节剂的潜在应用。分析了相关研究中未解决的问题,包括高金属含量导致能量降低、密度泛函方法计算的能量值的可靠性、尚无系统研究实测能量值等。提出今后的研究重点应是按照应用方向开发性能优良的ECPs。附参考文献50篇。
Abstract:
To illustrate the structure-property relationship of energetic coordination polymers (ECPs), the research results published in recent years are reviewed from two aspects of the charge state and potential application in the structure of ECPs, respectively. When ECPs with neutral ion, cation and anion are described, ECPs are classified according to ligands. The crystal structures, density, thermal stability, energy and sensitivity for coordination polymers are reviewed and the structure-property relationships of ECPs are summarized. The potential application of ECPs as primary explosives, second explosives and burning rate regulators are discussed according to their structural characteristics and properties. Some unsolved problems in the related research, including reducing energy due to high metal content, reliability of energy value calculated by DFT method and the urgent of confirm energy by experimental measurements, are analyzed. It is proposed that the focus of future research is to develop the ECPs with excellent properties according to the application direction with 50 references.

参考文献/References:

[1] Kreno L E, Leong K, Farha O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2012, 112(2):1105-1125.
[2] Das M C, Xiang S, Zhang Z, et al. Functional mixed metal-organic frameworks with metalloligands[J]. Angewandte Chemie International Edition, 2011, 50(45):10510-10520.
[3] Nagarkar S S, Joarder B, Chaudhari A K, et al. Highly selective detection of nitro explosives by a luminescent metal-organic framework[J]. Angewandte Chemie International Edition, 2013, 52(10):2881-2885.
[4] Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angewandte Chemie International Edition, 2011, 50(49):11586-11596.
[5] Wang C, Liu D, Lin W. Metal-organic frameworks as a tunable platform for designing functional molecular materials[J]. Journal of the American Chemical Society, 2013, 135(36):13222-13234.
[6] Zhang S, Yang Q, Liu X, et al. High-energy metal-organic frameworks (HE-MOFs):synthesis, structure and energetic performance[J]. Coordination Chemistry Reviews, 2016, 307:292-312.
[7] McDonald K A, Seth S, Matzger A J. Coordination polymers with high energy density:an emerging class of explosives[J]. Crystal Growth & Design, 2015, 15(12):5963-5972.
[8] Zhang Q, Shreeve J M. Metal-organic frameworks as high explosives:a new concept for energetic materials[J]. Angewandte Chemie, 2014, 53(10):2540-2542.
[9] Liu Xiang-yu, Yang Qi, Su Zhi-yong, et al. 3D High-energy-density and low sensitivity materials:synthesis, structure and physicochemical properties of an azide-Cu complex with 3,5-dinitrobenzoic acid[J]. Rsc Advances, 2014, 4(31):16087-16093.
[10] Liu X, Qu X, Zhang S, et al. High-performance energetic characteristics and magnetic properties of a three-dimensional cobalt(Ⅱ) metal-organic framework assembled with azido and triazole[J]. Inorganic Chemistry, 2015, 54(23):11520-11525.
[11] Zhang H, Zhang M, Lin P, et al. A highly energetic N-rich metal-organic framework as a new high-energy-density material[J]. Chemistry-A European Journal, 2016, 22(3):1141-1145.
[12] Li C, Zhang M, Chen Q, et al. 1-(3,5-Dinitro-1H-pyrazol-4-yl)-3-nitro-1H-1,2,4-triazol-5-amine (HCPT) and its energetic salts:highly thermally stable energetic materials with high-performance[J]. Dalton Transactions, 2016, 45(44):17956-17965.
[13] Ge J, Yang Q, Xie G, et al. Synthesis, structure and thermochemical study of a cobalt energetic coordination compound incorporating 3,5-diamino-1,2,4-triazole and pyridine-2,6-dicarboxylic acid[J]. Journal of Chemical Thermodynamics, 2015, 80:1-6.
[14] Gao W, Liu X, Su Z, et al. High-energy-density materials with remarkable thermostability and insensitivity:syntheses, structures and physicochemical properties of Pb(Ⅱ) compounds with 3-(tetrazol-5-yl) triazole[J]. Journal of Materials Chemistry A, 2014, 2(30):11958-11965.
[15] Liu X, Gao W, Sun P, et al. Environmentally friendly high-energy MOFs:crystal structures, thermostability, insensitivity and remarkable detonation performances[J]. Green Chemistry, 2015, 17(2):831-836.
[16] Jin X, Xu C X, Yin X, et al. A 1D cadmium complex with 3,4-diamino-1,2,4-triazole as ligand:synthesis, molecular structure, characterization, and theoretical studies[J]. Journal of Coordination Chemistry, 2015, 68(11):1913-1925.
[17] Yan Q L, Cohen A, Chinnam A K, et al. A layered 2D triaminoguanidine-glyoxal polymer and its transition metal complexes as novel insensitive energetic nanomaterials[J]. Journal of Materials Chemistry A, 2016, 4(47):18401-18408.
[18] Zhang S, Liu X, Yang Q, et al. A new strategy for storage and transportation of sensitive high-energy materials:guest-dependent energy and sensitivity of 3D metal-organic-framework-based energetic compounds[J]. Chemistry, 2014, 20(26):7906-7910.
[19] Bi Y G, Feng Y A, Li Y, et al. Synthesis, structure, and thermal decomposition of two copper coordination compounds[Cu(DAT)2(PA)2] and[Cu(DAT)2(HTNR)2] with nitrogen rich 1,5-diaminotetrazole (DAT)[J]. Journal of Coordination Chemistry, 2015, 68(1):181-194.
[20] Li F, Zhao W, Chen S, et al. Nitrogen-rich alkali metal salts (Na and K) of[bis(N,N-bis(1H-tetrazol-5-yl)amine)-zinc(Ⅱ)] anion:syntheses, crystal structures, and energetic properties[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2015, 641(5):911-916.
[21] Guo W, Zhang T, Zhang B, et al. Studies on sodium polymers based on di(1H-tetrazol-5-yl) methanone oxime[J]. RSC Advances, 2016, 6(89):85933-85939.
[22] Feng Y, Liu X, Duan L, et al. In situ synthesized 3D heterometallic metal-organic framework (MOF) as a high-energy-density material shows high heat of detonation, good thermostability and insensitivity[J]. Dalton Transactions, 2015, 44(5):2333-2339.
[23] Yang Q, Ge J, Gong Q, et al. Two energetic complexes incorporating 3,5-dinitrobenzoic acid and azole ligands:microwave-assisted synthesis, favorable detonation properties, insensitivity and effects on the thermal decomposition of RDX[J]. New Journal of Chemistry, 2016, 40(9):7779-7786.
[24] Shang Y, Jin B, Peng R, et al. A novel 3D energetic MOF of high energy content:synthesis and superior explosive performance of a Pb (ii) compound with 5, 5’-bistetrazole-1, 1’-diolate[J]. Dalton Transactions, 2016, 45(35):13881-13887.
[25] Liu Q, Jin B, Zhang Q, et al. Nitrogen-rich energetic metal-organic framework:synthesis, structure, properties, and thermal behaviors of Pb(Ⅱ) complex based on N,N-bis(1H-tetrazole-5-yl)-amine[J]. Materials, 2016, 9(8):681.
[26] Chen S, Zhang B, Yang L, et al. Synthesis, structure and characterization of neutral coordination polymers of 5, 5’-bistetrazole with copper (ii), zinc (ii) and cadmium (ii):a new route to reconcile oxygen balance and nitrogen content of high-energy MOFs[J]. Dalton Transactions, 2016, 45(42):16779-16783.
[27] Guo Z, Wu Y, Deng C, et al. Structural modulation from 1D chain to 3D framework:improved thermostability, insensitivity, and energies of two nitrogen-rich energetic coordination polymers[J]. Inorganic Chemistry, 2016, 55(21):11064-11071.
[28] He P, Zhang J G, Wu L, et al. Sodium 1,1’-dinitramino-5,5’-bistetrazolate:a 3D metal-organic framework as green energetic material with good performance and thermo stability[J]. Inorganica Chimica Acta, 2017, 455:152-157.
[29] Zhai L, Fan X, Wang B, et al. A green high-initiation-power primary explosive:synthesis, 3D structure and energetic properties of dipotassium 3,4-bis(3-dinitromethylfurazan-4-oxy) furazan[J]. RSC Advances, 2015, 5(71):57833-57841.
[30] Zhai L, Qu X, Wang B, et al. High energy density materials incorporating 4,5-bis(dinitromethyl)-furoxanate and 4,5-bis(dinitromethyl)-3-oxy-furoxanate[J]. Chempluschem, 2016, 81(11):1156-1159.
[31] Bushuyev O S, Brown P, Maiti A, et al. Ionic polymers as a new structural motif for high-energy-density materials[J]. Journal of the American Chemical Society, 2012, 134(3):1422-1425.
[32] Bushuyev O S, Peterson G R, Brown P, et al. Metal-organic frameworks (MOFs) as safer, structurally reinforced energetics[J]. Chemistry-A European Journal, 2013, 19(5):1706-1711.
[33] Li S, Wang Y, Qi C, et al. 3D Energetic metal-organic frameworks:synthesis and properties of high energy materials[J]. Angewandte Chemie, 2013, 52(52):14031-14035.
[34] Jin X, Zhang J G, Xu C X, et al. Eco-friendly energetic complexes based on transition metal nitrates and 3,4-diamino-1,2,4-triazole (DATr)[J]. Journal of Coordination Chemistry, 2014, 67(19):3202-3215.
[35] Xu C X, Yin X, Jin X, et al. Two coordination polymers with 3-hydrazino-4-amino-1,2,4-triazole as ligand:synthesis, crystal structures, and non-isothermal kinetic analysis[J]. Journal of Coordination Chemistry, 2014, 67(11):2004-2015.
[36] Xu C, Zhang J, Yin X, et al. Structural diversity and properties of M (Ⅱ) coordination compounds constructed by 3-hydrazino-4-amino-1, 2, 4-triazole dihydrochloride as starting material[J]. Inorganic Chemistry, 2015, 55(1):322-329.
[37] Klapötke T M, Schmid P C, Stierstorfer J, et al. Synthesis and characterization of tetrahedral zinc(Ⅱ) complexes with 3,6,7-triamino-7H-[1,2,4] triazolo[4,3-b] [1,2,4] triazole as nitrogen-rich ligand[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 2016, 642(5):383-389.
[38] Qu X N, Zhang S, Wang B Z, et al. An Ag(i) energetic metal-organic framework assembled with the energetic combination of furazan and tetrazole:synthesis, structure and energetic performance[J]. Dalton Transactions, 2016, 45(16):6968-6973.
[39] Tang Y, He C, Mitchell L A, et al. Potassium 4,4’-bis(dinitromethyl)-3,3’-azofurazanate:a highly energetic 3D metal-organic framework as a promising primary explosive[J]. Angewandte Chemie, 2016, 128(18):5655-5657.
[40] Seth S, Matzger A J. Coordination polymerization of 5,5’-dinitro-2H,2H’-3,3’-bi-1,2,4-triazole leads to a dense explosive with high thermal stability[J]. Inorganic Chemistry, 2016, 56(1):561-565.
[41] Zhang Z B, Xu C X, Yin L, et al. Synthesis, crystal structure and properties of a new 1D polymeric nitrogen-rich energetic complex {TAG[Li(BTO)(H2O)]}n based on 1H,1’H-5,5’-bitetrazole-1,1’-diolate[J]. RSC Advances, 2016, 6(77):73551-73559.
[42] Feng Y, Bi Y, Zhao W, et al. Anionic metal-organic frameworks lead the way to eco-friendly high-energy-density materials[J]. Journal of Materials Chemistry A, 2016, 4(20):7596-7600.
[43] Guo W, Zhang T, Zhang B, et al. Studies on sodium polymers based on di(1H-tetrazol-5-yl) methanone oxime[J]. RSC Advances, 2016, 6(89):85933-85939.
[44] 宋振伟, 李笑江. 高能量密度化合物HNIW的最新研究进展及其应用前景[J]. 化学推进剂与高分子材料, 2011, 9(1):40-45. SONG Zhen-wei, LI Xiao-jiang. Recent research progress and application prospect of high energy density compound HNIW[J]. Chemical Propellants & Polymeric Materials, 2011, 9(1):40-45.
[45] Singh G, Felix S P. Studies of energetic compounds, part 29:effect of NTO and its salts on the combustion and condensed phase thermolysis of composite solid propellants, HTPB-AP[J]. Combustion and Flame, 2003, 132(3):422-432.
[46] Burnside C H. Correlation of ferric oxide surface area and propellant burning rate[C]//13th Aerospace Sciences Meeting.New York:NASA,1975:234.
[47] Li B, Shen D, Chen X, et al. A new 1D energetic complex[Cu(2,3’-bpt)2·H2O]n:synthesis, structure, and catalytic thermal decomposition for ammonium perchlorate[J]. Journal of Coordination Chemistry, 2014, 67(11):2028-2038.
[48] Jing D, Chen D, Fan G, et al. From a novel energetic coordination polymer precursor to diverse Mn2O3 nanostructures:control of pyrolysis products morphology achieved by changing the calcination atmosphere[J]. Crystal Growth & Design, 2016, 16(12):6849-6857.
[49] 汤崭, 张国涛, 张同来,等. 含能配位聚合物[Cu(tza)2]n的晶体结构、热分析、感度和催化性能[J]. 高等学校化学学报, 2011, 32(8):1870-1875. TANG Zhan, ZHANG Guo-tao, ZHANG Tong-lai, et al. The crystal structure, thermal analysis, sensitivity and catalytic performance of the energetic compound[Cu(tza)2]n[J]. Journal of Higher School Chemistry, 2011, 32(8):1870-1875.
[50] 尚宇, 金波, 刘强强,等. 含能配位聚合物[Pb(BTO)(H2O)]n的合成、结构与性能[J]. 含能材料, 2017, 25(2):125-131. SHANG Yu, JIN Bo, LIU Qiang-qiang, et al. Structure and properties of an energetic coordination polymer[Pb(BTO)(H2O)]n[J]. Energetic Materials, 2017, 25(2):125-131.

相似文献/References:

[1]马海霞,宋纪蓉,胡荣祖,等.HMX,CL-20和DNTF自由基的光照检测[J].火炸药学报,2007,30(2):33.
[2]卢芳云,林玉亮,王晓燕,等.含能材料的高应变率响应实验[J].火炸药学报,2006,29(1):1.
[3]黄辉,泽山,黄亨建,等.新型含能材料的研究进展[J].火炸药学报,2005,28(4):9.
[4]刘子如,张腊莹.含能材料燃烧过程中热分解化学的研究进展[J].火炸药学报,2005,28(4):72.
[5]解国玲,任芊,董守龙,等.近红外光谱技术在含能材料成分分析中的建模研究[J].火炸药学报,2003,26(4):78.
[6]张小兵,袁亚雄,谢玉树.等离子体点火密闭爆发器实验研究[J].火炸药学报,2003,26(2):24.
[7]刘艳,刘子如,邱刚,等.静态与动态高压对含能材料热分解的影响[J].火炸药学报,2001,24(3):26.
[8]张泰华,卞桃华.含能材料冲击波引发判据的分析[J].火炸药学报,2001,24(3):41.
[9]张小兵,袁亚雄,余斌,等.固体含能材料激光点火性能实验研究[J].火炸药学报,2000,23(2):34.
[10]余秦伟,杨建明,赵锋伟,等.1,3,5-三取代六氢均三嗪类化合物的合成[J].火炸药学报,2008,31(3):50.

备注/Memo

备注/Memo:
收稿日期:2017-09-08;改回日期:2017-11-20。
基金项目:国家自然科学基金(No.21504067)
作者简介:刘雪敏(1992-),女,硕士研究生,从事配位聚合物研究。E-mail:liuxm92@126.com
通讯作者:郭兆琦(1981-),男,博士,副研究员,从事含能材料研究。E-mail:guozhaoqi@foxmail.com
更新日期/Last Update: 1900-01-01