|本期目录/Table of Contents|

[1]武春磊,成泓进,苟瑞君,等.CL-20/MDNI混合炸药分子间作用的分子动力学[J].火炸药学报,2017,40(6):66-72.[doi:10.14077/j.issn.1007-7812.2017.06.011]
 WU Chun-lei,CHENG Hong-jin,GOU Rui-jun,et al.Molecular Dynamics Study on Intermolecular Interaction of CL-20/MDNI Composite Explosive[J].,2017,40(6):66-72.[doi:10.14077/j.issn.1007-7812.2017.06.011]
点击复制

CL-20/MDNI混合炸药分子间作用的分子动力学()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
40卷
期数:
2017年第6期
页码:
66-72
栏目:
出版日期:
2017-12-29

文章信息/Info

Title:
Molecular Dynamics Study on Intermolecular Interaction of CL-20/MDNI Composite Explosive
作者:
武春磊 成泓进 苟瑞君 贾宏云 张树海
1. 中北大学环境与安全工程学院, 山西 太原 030051;
2. 应用物理化学国家级重点实验室, 陕西 西安 710061;
3. 太原市公安局, 山西 太原 030001
Author(s):
WU Chun-lei CHENG Hong-jin GOU Rui-jun JIA Hong-yun ZHANG Shu-hai
1. School of Chemical and Environmental Engineering, North University of China, Taiyuan 030051, China;
2. National Key Laboratory of Applied Physics and Chemistry, Xi’an 710061, China;
3. Taiyuan Municipal Public Security Bureau, Taiyuan 030001, China
关键词:
混合炸药CL-20MDNI分子间相互作用力学性质分子动力学分子中原子理论
Keywords:
composite explosiveCL-20MDNIintermolecular interactionmechanical propertiesmolecular dynamicsatoms theory in molecules
分类号:
TJ55;O64
DOI:
10.14077/j.issn.1007-7812.2017.06.011
文献标志码:
-
摘要:
为研究混合炸药分子间相互作用,从分子水平确定两组分的力学性能和安全性最佳的混合质量比,采用分子动力学方法和密度泛函理论,模拟不同配比下六硝基六氮杂异伍兹烷(ε-CL-20)主要生长面和1-甲基-4,5-二硝基咪唑(MDNI)混合炸药的结合能、力学性能和径向分布函数(RDF)等,并计算了其理论爆轰性能。结果表明,当CL-20质量分数为60%~65%时,CL-20/MDNI的结合能最大,两组分的相容性和稳定性最好,且CL-20的(1 0 1)面与MDNI分子间作用最强;CL-20和MDNI质量比为65∶35时,混合炸药体积模量(K)、剪切模量(G)和拉伸模量(E)最小,K/G值最大,此时混合炸药的力学性能最好; CL-20和MDNI分子间作用主要是CL-20中H和MDNI中O以及CL-20中O和MDNI中H形成的氢键;电子密度拓扑分析进一步证明,CL-20/MDNI之间存在氢键作用。CL-20质量分数为65%时,该混合炸药理论爆速和爆压分别为8 382 m/s和31.87 GPa。
Abstract:
To research the intermolecular interactions of composite explosives and determine the mechanical properties and mixing mass ratio with the best safety of two components from the molecular level, the molecular dynamics (MD) method and density fuctional theory were employed to simulate the main growth faces of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (ε-CL-20) and the binding energy, mechanical properties and radial distribution functions (RDF) of composite explosives composed of CL-20 and 1-methyl-4,5-dinitro-1H-imidazole (MDNI) under different mass ratios. Theoretical detonation performance was calculated. The results show that when the mass fraction of CL-20 is 60%-65%, the binding energies of CL-20/MDNI are maximum, the compatibility and stability of two components are best. The intermolecular interactions between (1 0 1) face of CL-20 and MDNI are strongest. The values of bulk modulus (K), shear modulus (G) and tensile modulus (E),CL-20/MDNI with the mass ratio of 65:35 composite explosives are minimum and the value of K/G is maximum, and the mechanical properties of composite explosives are the best. The intermolecular interactions are mainly hydrogen bonds formed between H atoms in CL-20 (or MDNI) molecules and O atoms in MDNI (or CL-20) molecules. The electron density topological analysis further proves that there is hydrogen bond between CL-20 and MDNI. When the mass fraction of CL-20 is 65%, the theoretical detonation velocity and detonation pressure are 8 382 m/s and 31.87 GPa, respectively.

参考文献/References:

[1] 欧育湘.炸药学[M]. 北京:北京理工大学出版社, 2014.
[2] 牛晓庆, 张建国, 冯晓军, 等.B炸药主要组分TNT和RDX分子间相互作用的理论研究[J]. 含能材料, 2011, 69(14):1627-1638. NIU Xiao-qing, ZHANG Jian-guo, FENG Xiao-jun, et al. Theoretical investigation on intermolecular interactions between the ingredients TNT and RDX of composition B[J]. Chinese Journal of Energetic Materials, 2011, 69(14):1627-1638.
[3] Xu X J, Xiao H M, Xiao J J, et al. Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-based PBXs[J]. Journal of Physical Chemistry B, 2006, 110(14):7203-7207.
[4] Xu X J, Xiao J J, Huang H, et al. Molecular dynamics simulations on the structures and properties of ε-CL-20-based PBXs[J]. Science in China Series B:Chemistry, 2007, 50(6):737-745.
[5] 杭贵云, 余文力, 王涛, 等.黑梯炸药力学性能与感度的分子动力学研究[J]. 火炸药学报, 2016, 39(6):32-37. HANG Gui-yun, YU Wen-li, WANG Tao, et al. Molecular dynamics research on mechanical properties and sensitivity of RDX-TNT explosive[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2016, 39(6):32-37.
[6] Jadhav H, Talawar M B, Sivabalan R, et al. Synthesis, characterization and thermolysis studies on new derivatives of 2, 4, 5-trinitroimidazoles:potential insensitive high energy materials[J]. Journal of Hazardous Materials, 2007, 143(1):192-197.
[7] Duddu R, Dave P R, Damavarapu R, et al. Synthesis of n-amino-and n-nitramino-nitroimidazoles[J]. Tetrahedron Letters, 2010, 51(2):399-401.
[8] Li X H, Zhang R Z, Zhang X Z. Computational study of imidazole derivative as high energetic materials[J]. Journal of Hazardous Materials, 2010, 183(1):622-631.
[9] Song J H, Wang K, Liang X, et al. High-energy-density materials based on 1-nitramino-2, 4-dinitroimidazole[J]. RSC Advances, 2013, 3(27):10859-10866.
[10] Li Y X, Wang X J, Wang J. 1-Methyl-4,5-dinitro-1H-imida-zole[J]. Acta Crystallogr Sect E Struct Rep Online, 2009, 65(12):3073.
[11] Sun H. Compass:an ab initio force-field optimized for condensed-phase application-overview with details on alkane and benzene compounds[J]. Journal of Physical Chemistry B, 1998, 102:7338-7364.
[12] Gao H, Zhang H, Ren D, et al. Theoretical insight into the co-crystal explosive of 2,4,6,8,10,12-hexanitrohexaazais-owurtzitane(CL-20)/1,1-diamino-2,2-dinitroethylene (FOX-7)[J]. Computational Materials Science, 2015, 107:33-41.
[13] Abou-Rachid H, Lussier, Ringuette, et al. On the correlation between miscibility and solubility properties of energetic plasticizers/polymer blends:modeling and simulation studies[J]. Propellants, Explosives, Pyrotechnics, 2008, 33(4):301-310.
[14] Wei X, Zhang A B, Ma Y, et al. Toward low-sensitive and high-energetic cocrystal Ⅲ:thermodynamics of energetic-energetic cocrystal formation[J]. Cryst Eng Comm, 2015, 17(47):9037-9047.
[15] Gao H, Zhang H, Gou R J, et al. Theoretical insight into the temperature-dependent acetonitrile (ACN) solvent effect on the diacetone diperoxide (DADP)/1,3,5-tribromo-2,4,6-trinitrobenzene (TBTNB) cocrystallization[J]. Computational Materials Science, 2016, 121:232-239.
[16] 肖继军, 朱卫华, 朱伟, 等.高能材料分子动力学[M]. 北京:科学出版社, 2013.
[17] 孙婷, 刘强, 肖继军, 等.CL-20/HMX共晶及其为基PBX界面作用和力学性能的MD模拟研究[J]. 化学学报, 2014, 72(9):1036-1042. SUN Ting, LIU Qiang, XIAO Ji-jun, et al. Molecular dynamics simulation of interface interactions and mechanical properties of CL-20/HMX cocrystal and its based PBXs[J]. Acta Chimica Sinica, 2014, 72(9):1036-1042.
[18] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Inc[M]. USA:Wallingford CT, 2009.
[19] Richard W B. Atoms in Molecules, A Quantum Theory[M]. New York:Oxford University Press, 1991.
[20] Richard W B. A quantum theory of molecular structure and its applications[J]. Chemical Reviews, 1991, 91(5), 893-928.
[21] Lipkowski P, Grabowski J, Robinson, et al. Properties of the C-H…H dihydrogen bond:an abinitio and topological analysis[J]. Journal of Physical Chemistry A, 2004, 108(49):10865-10872.
[22] Isabel R, Ibon A, Jose E. Behavior of ylides containing N, O and C atoms as hydrogen bond acceptors[J]. Journal of the American Chemical Society, 2000, 122(45):11154-11161.
[23] Kamlet M J, Jacobs J. A simple method for calculating detonation properties of CHNO explosives[J]. Propellants, Explosives, Pyrotechnics, 1968, 48:23-35.
[24] Wang Y P, Yang Z W, Li H Z, et al. A novel cocrystal explosive of HNIW with good comprehensive properties[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4):590-596.

相似文献/References:

[1]马海霞,宋纪蓉,胡荣祖,等.HMX,CL-20和DNTF自由基的光照检测[J].火炸药学报,2007,30(2):33.
[2]王 昕.美国不敏感混合炸药的发展现状[J].火炸药学报,2007,30(2):78.
[3]王彩玲,赵省向.不同粒度AP的机械感度[J].火炸药学报,2006,29(6):27.
[4]南 海,王晓峰.DADE及其混合炸药的机械感度[J].火炸药学报,2006,29(1):23.
[5]李玉斌,罗世凯.DMA法评价TATB填充含氟共聚物的耐热性[J].火炸药学报,2005,28(1):46.
[6]薛爱莲,黄寅生,康聪成,等.纳米LaCoO3对RDX基混合炸药的热分解特性和感度的影响[J].火炸药学报,2005,28(2):75.
[7]张斌,罗运军,谭惠民.多种键合剂与CL-20界面的相互作用机理[J].火炸药学报,2005,28(3):23.
[8]王海芳,刘天生,王凤英.数学模型法在混合********设计中的应用[J].火炸药学报,2004,27(3):55.
[9]于宪峰.纳米碳管对CL-20热分解性能的影响[J].火炸药学报,2004,27(3):80.
[10]吕春玲,刘玉存.HMX粒度级配对HMX/F2641输出能量的影响[J].火炸药学报,2003,26(4):64.

备注/Memo

备注/Memo:
收稿日期:2017-05-11;改回日期:2017-06-21。
基金项目:应用物理化学国家级重点实验室基金资助
作者简介:武春磊(1992-),男,硕士研究生,从事高能材料的理论设计与性能研究。E-mail:chunleiwums@163.com
通讯作者:苟瑞君(1968-),女,教授,从事武器系统对抗技术和现代爆炸技术研究。E-mail:grjzsh@163.com
更新日期/Last Update: 1900-01-01