|本期目录/Table of Contents|

[1]王为民,魏涛涛,高红旭,等.纳米PbZrO3对AP、RDX、HMX热分解和NG/NC双基推进剂燃烧性能的影响[J].火炸药学报,2017,40(6):29-35.[doi:10.14077/j.issn.1007-7812.2017.06.005]
 WANG Wei-min,WEI Tao-tao,GAO Hong-xu,et al.Effects of Nano PbZrO3 on the Decompositions of AP, RDX, HMX and the Combustion of (NG/NC) Propellant[J].,2017,40(6):29-35.[doi:10.14077/j.issn.1007-7812.2017.06.005]
点击复制

纳米PbZrO3对AP、RDX、HMX热分解和NG/NC双基推进剂燃烧性能的影响()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
40卷
期数:
2017年第6期
页码:
29-35
栏目:
出版日期:
2017-12-29

文章信息/Info

Title:
Effects of Nano PbZrO3 on the Decompositions of AP, RDX, HMX and the Combustion of (NG/NC) Propellant
作者:
王为民 魏涛涛 高红旭 肖立柏 徐抗震 赵凤起
1. 西北大学化工学院, 陕西 西安 710069;
2. 西安近代化学研究所, 陕西 西安 710065
Author(s):
WANG Wei-min WEI Tao-tao GAO Hong-xu XIAO Li-bai XU Kang-zhen ZHAO Feng-qi
1. College of Chemical Engineering, Northwest University, Xi’an 710069, China;
2. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
关键词:
纳米PbZrO3NG/NC双基推进剂金属复合氧化物固体推进剂热分解催化燃烧
Keywords:
nano PbZrO3NG/NC double-base propellantmetal composite oxidesolid propellantthermal decompositioncatalytic combustion
分类号:
TJ55;O65
DOI:
10.14077/j.issn.1007-7812.2017.06.005
文献标志码:
-
摘要:
通过共沉淀法制备了纳米锆酸铅(PbZrO3),采用X射线衍射(XRD)、扫描电镜(SEM)和透射电子显微镜(TEM)对其结构进行了表征;采用差示扫描量热法(DSC)研究了PbZrO3对AP、RDX和HMX热分解的催化性能;研究了含纳米PbZrO3的NG/NC双基推进剂(PbZrO3-DB)的热行为和非等温分解动力学。结果表明,PbZrO3呈现典型的钙钛矿结构;纳米PbZrO3能显著降低AP、RDX和HMX的热分解温度和表观活化能(分别降低了21、7.4和15 kJ/mol);PbZrO3-DB推进剂的热分解为非均相反应;PbZrO3-DB推进剂的热分解机理为相边界反应的收缩圆柱体,动力学方程为(dα)/dt=(1016.7)/β2(1-α)1/2exp(-1.696×105/RT);用纳米PbZrO3作为NG/NC双基推进剂的燃烧催化剂显著提高了其燃速,并降低了压强指数(在2~14MPa下为0.37~0.39);纳米PbZrO3的催化燃烧性能显著优于PbO。
Abstract:
Nanoscale lead zirconate (PbZrO3) was prepared by using co-precipitation method, and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The catalytic performances of PbZrO3 on the decomposition of ammonium perchlorate (AP), cyclotrimethylene trinitramine (RDX) and cyclotetramethylene tetranitramine (HMX) were examined by differential scanning calorimetry (DSC). The thermal behaviors, nonisothermal decomposition kinetics of nitroglycerin/nitrocotton (NG/NC) double-base propellant with nano PbZrO3 (PbZrO3-DB) were also studied. The results show that PbZrO3 presents a typical perovskite structure. Nano PbZrO3 can remarkably reduce the thermal decomposition temperature and apparent activation energy of decomposition process(reduced by 21, 7.4 and 15 kJ/mol respectively). The thermal decomposition of PbZrO3-DB propellant is heterogeneous. Thermal decomposition mechanism of PbZrO3-DB propellant is a contracting cylinder with phase boundary reaction, and the kinetic equation is:=(dα)/dt=(1016.7)/β2(1-α)1/2exp(-1.696×105/RT).Used as a combustion catalyst of NG/NC solid propellant, nano PbZrO3 can obviously increase the burning rate and decrease the pressure exponent (0.37-0.39) in the pressure range of 2-14 MPa. The catalytic combustion action of nano PbZrO3 is much better than that of PbO.

参考文献/References:

[1] Armstrong R W, Baschung B, Booth D W, et al. Enhanced propellant combustion with nanoparticles[J]. Nano Letters, 2003, 3(2):253-255.
[2] Styborski J A, Scorza M J, Smith M N, et al. Iron nanoparticle additives as burning rate enhancers in AP/HTPB composite propellants[J]. Propellants,Explosives,Pyrotechnics, 2015, 40(2):253-259.
[3] Hao G Z,Liu J,Gao H,et al. Preparation of nano-sized CuO and its catalytic effect on the thermal decomposition of AP[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(4):18-21.
[4] Chen L J, Zhu D Y. The particle dimension controlling synthesis of α-MNO2 nanowires with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Solid State Sciences, 2014, 27:69-72.
[5] Jamil S, Janjua MRSA, Ahmad T. The synthesis of flower shaped microstructures of Co3O4 by solvothermal approach and investigation of its catalytic activity[J]. Solid State Sciences, 2014, 36:73-79.
[6] Zhang X H, Long C, Wang T C, et al. Study on the effects of nano-PbO on the combustion properties of double-base propellant[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2002, 25(2):39-41.
[7] Liu T, Wang L S, Yang P, et al. Preparation of nanometer CuFe2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate[J]. Materials Letters, 2008, 62(24):4056-4058.
[8] Dong S S, Tian X D, Xu Z X, et al. Role of self-assembly coated Er3+:YAlO3/TiO2 in intimate coupling of visible-light-responsive photocatalysis and biodegradation reactions[J]. Journal of Hazardous Materials, 2016, 302:386-394.
[9] Delorme F, Diaz C P, Guilmeau E, et al. Thermoelectric properties of Ca3Co4O9-Co3O4 composites[J]. Ceramics International, 2015, 41(8):10038-10043.
[10] Petnikota S, Marka S K, Srikanth VVSS, et al. Elucidation of few layered graphene-complex metal oxide (A2Mo3O8, A=Co, Mn and Zn) composites as robust anode materials in Lin ion batteries[J]. Electrochimical Acta, 2015, 178:699-708.
[11] Wei T T, Zhang Y, Xu K Z, et al. Catalytic action of nano BiWO6 on thermal decompositions of AP, RDX, HMX and combustion of NG/NC propellant[J]. RSC Advances, 2015, 5(86):70323-70328.
[12] Zhang Y, Wei T T, Xu K Z, et al. Catalytic decomposition action of hollow CuFe2O4 nanospheres on RDX and FOX-7[J]. RSC Advances, 2015, 5(92):75630-75635.
[13] Sanoop A P, Rajeev R, George B K. Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate[J]. Thermochimical Acta, 2015, 606:34-40.
[14] Nawanil C, Boomchom B, Prachayawarakorn J, et al. Synthesis and phase evolution of electrospun antiferroelectric lead zirconate (PbZrO3) nanofibers[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2012, 177(13):1009-1016.
[15] Bjφrheim T S, Kuwabara A, Ahmed I, et al. A combined conductivity and DFT study of protons in PbZrO3 and alkaline earth zirconate perovskites[J]. Solid State Ionics, 2010, 181(3/4):130-137.
[16] Nunes J M A, Espinosa J W M, Gurgel M F C, et al. Photoluminescent properties of lead zirconate powders obtained by the polymeric percursor method[J]. Ceramic International, 2012, 38(6):4593-4599.
[17] Khamman O, Chaisan W, Yimnirun R, et al. Effect of vibro-milling time on phase formation and particle size of lead zirconate nanopowders[J]. Materials Letters, 2007, 61(13):2822-2826.
[18] Ko T, Hwang D. Preparation of nanocrystalline lead zirconate powder by homogeneous precipitation using hydrogen peroxide and urea[J]. Materials Letters, 2003, 57(16/17):2472-2479.
[19] Hao G Z, Liu J, Liu H H, et al. Preparation of nano-sized copper chromite and its effect on thermal decomposition performances of ammonium perchlorate[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(1):26-29.
[20] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706.
[21] Yang W T, Zhang Y C, Liu S W, et al. Thermodynamic properties, non-isothermal reaction kinetics and safety of RDX-based combustible materials[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2017, 40(2):19-23.
[22] Wei Z X, Xu Y Q, Liu H Y, et al. Preparation and catalytic activities of LaFeO3 and Fe2O3 for HMX thermal decomposition[J]. Journal of Hazardous Materials, 2009, 165(1/3):1056-1061.
[23] Yi J H, Zhao F Q, Xu S Y, et al. Effect of pressures on decomposition reaction kinetics of double-base propellant catalyzed with cerium citrate[J]. Journal of Thermal Analysis and Calorimetry, 2009, 95(2):381-385.
[24] Ozawa T. A new method of analyzing thermo-gravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11):1881-1885.
[25] Vyazovkin S, Charles A W. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J]. Thermochimica Acta, 1999, 340/341:53-68.
[26] Yi J H, Zhao F Q, Hong W L, et al. Effects of Bi-NTO complex on thermal behaviors, nonisothermal reaction kinetics and burning rates of NG/TEGDN/NC propellant[J]. Journal of Hazardous Materials, 2010, 176(1/3):257-261.
[27] Hu R Z, Gao S L, Zhao F Q, et al. Thermal Analysis Kinetics[M]. 2nd ed. Beijing (in Chinese):Science Press, 2008.
[28] Dey A, Athar J, Varma P, et al. Graphene-iron oxide nanocomposite (GINC):an efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant[J]. RSC Advances, 2015, 5(3):1950-1960.
[29] Kohga M, Naya T. Thermal decomposition behaviors and burning characteristics of AN/RDX-based composite propellants supplemented with MNO2 and Fe2O3[J]. Journal of Energetic Materials, 2015, 33(4):288-304.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2017-09-19;改回日期:2017-10-27。
基金项目:The national defence key laboratory of propellant and explosive combustion (No.914*162) and postdoctoral science foundation of China (No.2014M552480).
作者简介:WANG Wei-min (1992-), male, graduate, research fields:nano materials.E-mail:1633541139@qq.com
通讯作者:XU Kang-zhen (1976-), male, professor, research fields:the synthesis and properties of new energetic materials. E-mail:xukz@nwu.edu.cn
更新日期/Last Update: 1900-01-01