|本期目录/Table of Contents|

[1]Lemi Türker.Effect of Magnesium Atom on CL-20——A DFT Treatment[J].火炸药学报,2017,40(6):17-22.[doi:10.14077/j.issn.1007-7812.2017.06.003]
 Lemi Türker.Effect of Magnesium Atom on CL-20——A DFT Treatment[J].,2017,40(6):17-22.[doi:10.14077/j.issn.1007-7812.2017.06.003]
点击复制

Effect of Magnesium Atom on CL-20——A DFT Treatment()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
40卷
期数:
2017年第6期
页码:
17-22
栏目:
出版日期:
2017-12-29

文章信息/Info

Title:
Effect of Magnesium Atom on CL-20——A DFT Treatment
作者:
Lemi Türker
Department of Chemistry Vniversiteler, Middle East Technical University, Ankara Turkey 06231
Author(s):
Lemi Türker
Department of Chemistry Vniversiteler, Middle East Technical University, Ankara Turkey 06231
关键词:
CL-20hexanitro hexaazaisowurtizaneexplosivesmagnesiumdensity functional theory
Keywords:
CL-20hexanitro hexaazaisowurtizaneexplosivesmagnesiumdensity functional theory
分类号:
TJ55;TQ560
DOI:
10.14077/j.issn.1007-7812.2017.06.003
文献标志码:
-
摘要:
The effect of magnesium atom on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtizane (HNIW, CL-20) explosive is considered within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p). The Mg atom transfers some electron population to CL-20 and one of the nitro groups linked to 6-membered piperazine ring system (base) is expelled in the prenitrite form. The total Mulliken charges on the NO2 group reveals that the respective nitramine bond in CL-20 is the most susceptible one to impact. The calculated IR and UV-VIS spectra are investigated. The effect of Mg atom on the molecular orbital energies, especially the HOMO and LUMO has been discussed. Narrowing of the interfrontier molecular orbital energy gap (Δε) in the composite system occurs. Therefore, the composite system is more susceptible to impact compared to CL-20.
Abstract:
The effect of magnesium atom on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtizane (HNIW, CL-20) explosive is considered within the constraints of density functional theory at the level of B3LYP/6-31++G(d,p). The Mg atom transfers some electron population to CL-20 and one of the nitro groups linked to 6-membered piperazine ring system (base) is expelled in the prenitrite form. The total Mulliken charges on the NO2 group reveals that the respective nitramine bond in CL-20 is the most susceptible one to impact. The calculated IR and UV-VIS spectra are investigated. The effect of Mg atom on the molecular orbital energies, especially the HOMO and LUMO has been discussed. Narrowing of the interfrontier molecular orbital energy gap (Δε) in the composite system occurs. Therefore, the composite system is more susceptible to impact compared to CL-20.

参考文献/References:

[1] Nielsen A T. Caged polynitramine compound:US,5693794[P]. 1997.
[2] Nielsen A T, Chafin A P, Christian S L, Moore D W, Nadler M P, Nissan R A, Vanderah D J, Gilardi R D, George C F,Flippen-Anderson J L. Synthesis of polyazapolycyclic caged polynitramines[J]. Tetrahedron, 1998, 54:11793-11812.
[3] Bayat Y, Mokhtari J, Farhadian N, Bayat M. Heteropolyacids:an efficient catalyst for synthesis of CL-20[J]. Journal of Energetic Materials, 2012, 30(2):124-134.
[4] Politzer P, Murray J S. Energetic Materials, Part 1, Decomposition, Crystal and Molecular Properties[M]. Amsterdam:Elsevier, 2003.
[5] Foltz M, Coon C L, Garcia F, Nichols A L. Ⅲ. The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane. Part I[J].Propellants, Explosives, Pyrotechnics,1994, 19:133-145.
[6] Jiang X, Guo X, Ren H, Jiao Q. Preparation and characterization of desensitized ε-HNIW in solvent-antisolvent recrystallizations[J].CEJEM,2012,9:219-236.
[7] Doyle R J Jr. The gas-phase dissociation of a new polyazapolycyclic nitramine:hexanitrohexaazaisowurtzitane[J]. Org Mass Spectrom,1991,26:723-726.
[8] Patil D G, Brill T B. Thermal decomposition of energetic materials 53. Kinetics and mechanism of thermolysis of hexanitroazaisowurtizitane[J]. Combust Flame,1991,87:145-151.
[9] Bolton O, Simke L R, Pagoria P F, Matzger A J. High power explosive with good sensitivity:A 2:1 cocrystal of CL-20:HMX[J]. Cryst Growth Des, 2012, 12:4311-4314.
[10] Nair U R, Asthana S N, Rao A S, and Gandhe B R. Advances in high energy materials[J]. Defence Science Journal, 2010,60(2):137-151,
[11] Tian Q, Yan G, Sun G, Huang C, Xie L, Chen B, Huang M, Li H, Liu Y, Wang J. Thermally induced damage in hexanitrohexaazaisowurtzitane[J]. CEJEM, 2013, 10:359-369.
[12] Wang D, Gao B, Yang G, Nie F, Huang H. Preparation of CL-20 explosive nanoparticles and their thermal decomposition property[J]. Journal of Nanomaterials, 2016, 20:5462097/1-5462097-7.
[13] Zeman S, Yan Q L, Vlacek M. Recent advances in the study of the initiation of energetic materials using characteristics of their thermal decomposition. Part I. Cyclic nitramines[J].CEJEM,2014,11:173-189.
[14] Pelikan V, Zeman S, Yan Q L, Erben M, Elbeih A, Akstein Z. Concerning the shock sensitivity of cyclic nitramines incorporated into a polyisobutylene matrix[J]. CEJEM,2014,11:219-235.
[15] Molt R W J, Bartlett R J, Watson T J, Bazanté A P. Conformers of CL-20 explosive and ab initio refinement using perturbation theory:implications to detonation mechanisms[J]. J Phys Chem A,2012,116(49):12129-12135.
[16] Pi Z, Chen L, Wu J. Temperature-dependent shock initiation of CL-20-based high explosives[J]. CEJEM, 2017, 14(2):361-374.
[17] Türker L. Instability of CL-20 exposed to the effects of α-particle[J]. Indian Journal of Chemistry A, 2015, 54:858-866.
[18] Nicolich S M, Capellos C, Balas W A, Akestar J D, Hatch R L. High-blast explosive compositions containing particulate metal:US8168016 B1, US 10/907,599[P].2012.
[19] Türker L. Thermobaric and enhanced blast explosives (TBX and EBX)[J]. Defence Technology,2016,12(6):423-445.
[20] Li Z H, Ren H, Jiao Q J, Dong J. Fabrication and characterization in composites of nanoenergetic materials and porous metal with uvink method[J]. Integrated Ferroelectrics, 2014,152:73-80.
[21] Chan M L, Turner A D. High energy blast explosives for confined spaces:US,20070113939 A1(US 11/482,302)[P]. 2007.
[22] Stewart J J P. Optimization of parameters for semiempirical methods I. method[J]. J Comput Chem, 1989, 10:209-220.
[23] Stewart J J P. Optimization of parameters for semi empirical methods Ⅱ. application[J]. J Comput Chem, 1989,10:221-264.
[24] Leach A R. Molecular Modeling[M]. Essex:Longman, 1997.
[25] Fletcher P. Practical Methods of Optimization[M]. New York:Wiley, 1990.
[26] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965,140 A1:1133-1138.
[27] Parr R G, Yang W. Density Functional Theory of Atoms and Molecules[M]. London:Oxford University Press, 1989.
[28] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys Rev A, 1988, 38:3098-3100.
[29] Vosko S H, Vilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis[J]. Can J Phys,1980,58:1200-1211.
[30] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys Phys Rev,1988, 37B:785-789.
[31] Spartan 06 Program[CP/DK].Wavefunction Inc, Irvine, CA.
[32] Klap?tke T M.Chemistry of High-energy Materials[M]. Berlin:De Gruyter,2011.
[33] Zhang C, Shu Y, Huang Y, Zhao X, Dong H. Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds[J]. J Phys Chem B, 2005, 109:8978-8982.
[34] Ovens E J. Relationship between impact induced reactivity of trinitroaromatic molecules and their molecular structure[J]. J Mol Struct (Theochem), 1984, 121:213-220.

相似文献/References:

[1]马海霞,宋纪蓉,胡荣祖,等.HMX,CL-20和DNTF自由基的光照检测[J].火炸药学报,2007,30(2):33.
[2]张斌,罗运军,谭惠民.多种键合剂与CL-20界面的相互作用机理[J].火炸药学报,2005,28(3):23.
[3]于宪峰.纳米碳管对CL-20热分解性能的影响[J].火炸药学报,2004,27(3):80.
[4]王晓红,衡淑云,张 皋,等.DSC/TG-MS联用技术研究CL-20与NC-NG体系的相互作用[J].火炸药学报,2007,30(4):20.
[5]王申,金韶华,盛思源,等.含CL-20的NEPE推进剂能量水平分析[J].火炸药学报,2002,25(1):12.
[6]冯泽旺,刘翠玲,方涛,等.二乙酰基四硝基六氮杂异伍兹烷分子和晶体结构[J].火炸药学报,2001,24(1):38.
[7]丁 黎,赵凤起,刘子如,等.含CL-20的NEPE推进剂各组分热分解的相互影响[J].火炸药学报,2008,31(2):38.
[8]丁黎,赵凤起,潘清,等.原位傅里叶变换红外光谱研究含CL-20的NEPE推进剂的热分解[J].火炸药学报,2008,31(4):77.
[9]王鼎,曹端林,王建龙,等.Span类表面活性剂对CL 20重结晶的影响[J].火炸药学报,2010,33(5):48.
 WANGDing,CAO Duan-lin,WANG Jian-long,et al.Influences of Span Surfactants on the CL-20 Recrystallization[J].,2010,33(6):48.
[10]刘芮,尹艳丽,张同来,等.CL -20热分解的动态真空安定性试验方法[J].火炸药学报,2011,34(2):21.
 LIU Rui,YIN Yan-li,ZHANG Tong-lai,et al.Dynamic Vacuum Stability Test Method for Thermal Decomposition of CL-20[J].,2011,34(6):21.

备注/Memo

备注/Memo:
收稿日期:2017-09-17;改回日期:2017-11-10。
作者简介:Lemi Türker(1950-),male,Prof.,Dr.,research field:organic chemistry.E-mail:lturker@metu.edu.tr
更新日期/Last Update: 1900-01-01