|本期目录/Table of Contents|

[1]陈京,王晗,刘萌,等.复合改性双基推进剂降感技术及感度机理研究进展[J].火炸药学报,2017,40(6):7-16.[doi:10.14077/j.issn.1007-7812.2017.06.002]
 CHEN Jing,WANG Han,LIU Meng,et al.Progress of Study on Desensitization Techniques and Sensitivity Mechanisms of Composite Modified Double-base Propellants[J].,2017,40(6):7-16.[doi:10.14077/j.issn.1007-7812.2017.06.002]
点击复制

复合改性双基推进剂降感技术及感度机理研究进展()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
40卷
期数:
2017年第6期
页码:
7-16
栏目:
出版日期:
2017-12-29

文章信息/Info

Title:
Progress of Study on Desensitization Techniques and Sensitivity Mechanisms of Composite Modified Double-base Propellants
作者:
陈京 王晗 刘萌 吴雄岗 樊学忠
1. 西安近代化学研究所, 陕西 西安 710065;
2. 西安近代化学研究所燃烧与爆炸技术重点实验室, 陕西 西安 710065
Author(s):
CHEN Jing WANG Han LIU Meng WU Xiong-gang FAN Xue-zhong
1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
2. Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
关键词:
改性双基推进剂CMDB推进剂钝感高能填料钝感增塑剂感度机理感度预测
Keywords:
composite modified double-base propellantsCMDB propellantinsensitive high energy fillerinsensitive plasticizerssensitivity mechanismprediction of sensitivity
分类号:
TJ55;V512
DOI:
10.14077/j.issn.1007-7812.2017.06.002
文献标志码:
-
摘要:
从高价值武器平台战术导弹面临的安全性问题出发,综述了复合改性双基(CMDB)推进剂含能组分降感技术及感度机理的研究进展。从含能填料改性降感及取代降感技术、含能增塑剂降感技术及综合降感技术等方面,总结了CMDB推进剂能量与感度的匹配技术途径。介绍了近年来含能组分与多组分感度机理研究工作,概述了CMDB推进剂感度机理及预测方法。研究趋势表明,新型钝感材料和新降感技术有待进一步应用于CMDB推进剂,应结合理论计算研究形成感度预测方法,以提高CMDB推进剂的研制效率及综合性能。附参考文献101篇。
Abstract:
Starting from the safety problems faced by high-value weapon platform tactical missiles, the research progress in the desensitizing techniques and sensitivity mechanisms of composite modified double-base (CMDB) propellant energetic components was summarized. From the aspects of modifying/replacing desensitization techniques of energetic filler, desensitization technique of energetic plasticizers and comprehensive desensitization technique etc., the matching technique approach between energy and sensitivity of CMDB propellant was summarized. The research work on the sensitivity mechanism of energetic component and multi components in recent years was introduced. The sensitivity mechanism and prediction method of CMDB propellant were summarized. The research trend show that the new insensitive materials and novel desensitization technique should be further applied to CMDB propellants and the sensitivity prediction method should be combined with the theoretical calculation to improve the development efficiency and comprehensive properties of CMDB propellants. With 101 conferences.

参考文献/References:

[1] 刘所恩, 陈锦芳, 潘葆, 等. 新型螺压高能改性双基推进剂研究[J]. 兵工学报, 2015, 36(6):1123-1127. LIU Suo-en, CHEN Jin-fang, PAN Bao, et al. Study of novel screw extruded high energy composite double-base propellant[J]. Acta Armamentarii, 2015, 36(6):1123-1127.
[2] Asthana N, Athawale B K, Singh H. Impact, friction, shock sensitivities and ddt behaviour of advanced cmdb propellants[J]. Defence Science Journal, 2013, 39(1).
[3] 刘所恩, 周伟良, 赵效民, 等. 螺压硝胺改性双基推进剂对冲击波激励的安全性评价[J]. 含能材料, 2015, 23(7):644-647. LIU Suo-en, ZHOU Wei-liang, ZHAO Xiao-min, et al. Safety analysis of screw extrusion nitramine modified double base propellant on shock wave[J]. Chinese Journal of Energetic Materials, 2015, 23(7):644-647.
[4] Jaiprakashagrawal, 阿格拉沃尔, 欧育湘. 高能材料:火药、炸药和烟火药[M]. 北京:国防工业出版社, 2013.
[5] 付小龙, 樊学忠, 毕福强, 等. 硝基呋咱/CMDB推进剂能量特性[J]. 含能材料, 2014,22(6):852-856. FU Xiao-long, FAN Xue-zhong, BI Fu-qiang, et al. Energy characteristics of CMDB propellants with nitrofurazan compounds[J]. Chinese Journal of Energetic Materials, 2014, 22(6):852-856.
[6] 田军, 王宝成, 桑军锋, 等. DNTF-CMDB推进剂性能的实验研究[J]. 火炸药学报, 2015,38(4):76-79. TIAN Jun, WANG Bao-cheng, SANG Jun-feng, et al. Experimental research on the properties of CMDB propellant containing DNTF[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015, 38(4):76-79.
[7] 金溪, 王江宁, 宋秀铎, 等. 含CL-20改性双基推进剂的能量计算与分析[J]. 含能材料, 2012, 20(1):67-70. JIN Xi, WANG Jiang-ning, SONG Xiu-duo, et al. Calculation and analysis on energy characteristics of composite modified double-based propellant containing CL-20[J]. Chinese Journal of Energetic Materials, 2012, 20(1):67-70.
[8] Zeman, Jungová M. Sensitivity and performance of energetic materials[J]. Propellants,Explosives,Pyrotechnics, 2016, 41(3):426-451.
[9] Charlery R, Renouf M, Saulot A, et al. Experimental and numerical modelling of the ignition of solid propellant[J]. Tribology International, 2015, 82:330-342.
[10] 刘所恩, 赵效民, 赵美玲, 等. 螺压硝胺改性双基推进剂对机械刺激的安全性分析[J]. 含能材料, 2013, (6):818-820. LIU Suo-en, ZHAO Xiao-min, ZHAO Mei-ling, et al. Safety performance of modified nitramine double base propellant by screw extrusion subject to mechanical stimulus[J]. Chinese Journal of Energetic Materials, 2013, 21(6):818-820.
[11] 徐司雨, 赵凤起, 李上文, 等. 含CL-20的改性双基推进剂的机械感度[J]. 推进技术, 2006, 27(2):182-186. XU Si-yu, ZHAO Feng-qi, LI Shang-wen, et al. Impact and friction sensitivity of composite modified double base propellant containing hexanitrohexaazaisowurtzitane (CL-20)[J]. Journal of Propulsion Technology, 2006, 27(2):182-186.
[12] Bernecker R. The deflagration-to-detonation transition process for high-energy propellants——a review[J]. Aiaa Journal, 2015, 24(1):82-91.
[13] 李洪珍, 康彬, 李金山, 等. RDX晶体特性对冲击感度的影响规律[J]. 含能材料, 2010, 18(5):487-491. LI Hong-zhen, KANG Bin, LI Jin-shan, et al. Effects of RDX crystal characteristics on shock sensitivities[J]. Chinese Journal of Energetic Materials, 2010, 18(5):487-491.
[14] 徐容, 李洪珍, 康彬, 等. HMX晶体内部孔隙率、缺陷类型及颗粒度对冲击波感度的影响[J]. 含能材料, 2011, 19(6):632-636. XU Rong, LI Hong-zhen, KANG Bin, et al. Effects of HMX crystal characteristics on shock sensitivities:crystalline inter voids,particle size,morphology[J]. Chinese Journal of Energetic Materials, 2011, 19(6):632-636.
[15] 杨志剑, 曾贵玉, 李金山, 等. 敏感炸药的高效降感技术研究进展[C]//全国危险物质与安全应急技术研讨会论文集(上). 重庆:中国工程物理研究院, 2011. YANG Zhi-jian, ZENG Gui-yu, LI Jin-shan, et al. Research progress of highly sensitive drop technology for sensitive explosives[C]//Proceedings of National Symposium on Emergency Technology for Hazardous Materials and Safety. Chongqing:China Academy of Engineering Physics, 2011.
[16] 赵雪, 芮久后, 冯顺山. 重结晶法制备球形化RDX[J]. 北京理工大学学报, 2011, 31(1):5-7. ZHAO Xue, RUI Jiu-hou, FENG Shun-shan. Recrystallization method for preparation of spherical RDX[J]. Transactions of Beijing Institute of Technology, 2011, 31(1):5-7.
[17] 荆肖凡, 徐文峥, 王晶禹. 超声和喷雾辅助制备微米球形化RDX[J]. 火工品, 2013(4):46-48. JING Xiao-fan, XU Wen-zheng, WANG Jing-yu. Study on ultrasound-and spray-assisted precipitation of micrometer and spherical RDX[J]. Initiators & Pyrotechnics, 2013(4):46-48.
[18] Song X, Wang Y, An C, et al. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine[J]. Journal of Hazardous Materials, 2008, 159(2-3):222-229.
[19] 王江, 刘英, 李小东, 等. 喷雾干燥法制备球形RDX的工艺优化[J]. 火炸药学报, 2015, 38(1):16-21. WANG Jiang, LIU Ying, LI Xiao-dong, et al. Optimization of process for preparing spherical RDX by the spray drying method[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015, 38(1):16-21.
[20] 付廷明, 杨毅, 李凤生. 球形超细HMX的制备[J]. 火炸药学报, 2002, 25(2):12-13. FU Ting-ming, YANG Yi, LI Feng-sheng. Preparation of HMX microsphere[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2002, 25(2):12-13.
[21] 王保民, 张景林. 气体反溶剂(GAS)过程细化技术及对炸药安全性能的影响研究[J]. 中国安全科学学报, 2001, 11(4):32-34. WANG Bao-min, ZHANG Jing-lin. Study on fining technology of gas anti-solvent (GAS) process and its effect on safety of the explosive[J]. China Safety Science Journal, 2001, 11(4):32-34.
[22] 耿孝恒, 王晶禹, 张景林. 不同粒度RDX的重结晶制备和机械感度研究[J]. 工业安全与环保, 2009, 35(7):29-30. GENG Xiao-heng, WANG Jing-yu, ZHANG Jing-lin. Recrystallization preparation of different particle RDX and study on the mechanical sensitivity[J]. Industrial Safety & Environmental Protection, 2009, 35(7):29-30.
[23] 韵胜, 刘玉存, 于雁武, 等. 超细微球形低感度HMX的制备[J]. 含能材料, 2011, 19(3):305-309. YUN Sheng, LIU Yu-cun, YU Yan-wu, et al. Preparation of microspherical and desensitized HMX[J]. Chinese Journal of Energetic Materials, 2011, 19(3):305-309.
[24] 宋小兰, 李凤生, 张景林, 等. 粒度和形貌及粒度分布对RDX安全和热分解性能的影响[J]. 固体火箭技术, 2008, 31(2):168-172. SONG Xiao-lan, LI Feng-sheng, ZHANG Jing-lin, et al. Influence of particle size,morphology and size distribution on the safety and thermal decomposition properties of RDX[J]. Journal of Solid Rocket Technology, 2008, 31(2):168-172.
[25] 汪波, 刘玉存, 李敏. HMX粒度对其撞击感度的影响研究[J]. 中北大学学报自然科学版, 2005, 26(1):35-37. WANG Bo, LIU Yu-cun, LI Min. Study on the influence of particle size on the impact sensitivity of HMX[J]. Journal of North China Institute of Technology, 2005, 26(1):35-37.
[26] 吕春玲, 张景林. 粒度对HMX撞击感度的影响[J]. 爆炸与冲击, 2003, 23(5):472-474. Lü Chun-ling, ZHANG Jing-lin. Influence of particle size on the impact sensitivity of HMX[J]. Explosion & Shock Waves, 200323(5):472-474.
[27] 田龙, 吴晓青, 郑主宜, 等. 粒度对炸药感度影响的研究进展[J]. 四川化工, 2013, 16(1):28-30. TIAN Long, WU Xiao-qing, ZHENG Zhu-yi, et al. Progress of grain size of explosives sensitivity[J]. Sichuan Chemical Industry, 2013, 16(1):28-30.
[28] 陈天石, 张玉若, 张英浩. HMX粒度对其机械感度的影响研究[J]. 四川兵工学报, 2006, 27(5):27-28. CHEN Tian-shi, ZHANG Yu-ruo, ZHANG Ying-hao. Study on the influence of particle size on the impact sensitivity of HMX[J]. Journal of North China Institute of Technology, 2006, 27(5):27-28.
[29] Gao H, Hou X, Ke X, et al. Effects of nano-HMX on the properties of RDX-CMDB propellant:higher energy and lower sensitivity[J]. Defence Technology, 2017, 13(5):323-326.
[30] Qiu H, Stepanov V, Stasio A R D, et al. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity[J]. Journal of Hazardous Materials, 2011, 185(1):489-93.
[31] 刘杰, 王龙祥, 李青, 等. 钝感纳米RDX的制备与表征[J]. 火炸药学报, 2012, 35(6):46-50. LIU Jie, WANG Long-xiang, LI Qing, et al. Preparation and characterization of insensitive nano RDX[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2012, 35(6):46-50.
[32] 刘杰, 李青, 曾江保, 等. 机械粉碎法制备不敏感纳米RDX[J]. 爆破器材, 2013(4):1-5. LIU Jie, LI Qing, ZENG Jiang-bao, et al. Mechanical pulverization for the production of sensitivity reduced nano-RDX[J]. Explosive Materials, 2013(4):1-5.
[33] 曾江保, 刘杰, 王龙祥, 等. 纳米HMX的制备及热性能分析和感度研究[J]. 爆破器材, 2014(1):8-12. ZENG Jiang-bao, LIU Jie, WANG Long-xiang, et al. Preparation, thermal performance analysis and sensitivities study of nano HMX[J]. Explosive Materials, 2014(1):8-12.
[34] 王娟, 孙笑, 周新利. 高级脂肪酸酯类化合物包覆RDX的研究[J]. 含能材料, 2015, 23(6):527-531. WANG Juan, SUN Xiao, ZHOU Xin-li. Properties of RDX coated by higher aliphatic ester compounds[J]. Chinese Journal of Energetic Materials, 2015, 23(6):527-531.
[35] 杨雪芹, 常双君, 赵芦奎, 等. 包覆改性RDX及其在CMDB推进剂中的应用[J]. 爆破器材, 2014, (6):22-25. YANG Xue-qin, CHANG Shuang-jun, ZHAO Lu-kui, et al. Coating of RDX and its application in CMDB propellant[J]. Explosive Materials, 2014(6):22-25.
[36] 王彩玲, 王江, 刁小强, 等. 喷雾干燥法制备微米级球形RDX复合颗粒及性能表征[J]. 中国胶粘剂, 2015(10):8-11. WANG Cai-ling, WANG Jiang, DIAO Xiao-qiang, et al. Micron grade-spherical RDX compound particles prepared by spray drying and its properties characterization[J]. China Adhesives, 2015(10):8-11.
[37] Czerski H, Proud W G, Field J E. The relationship between shock sensitivity and morphology in granular RDX[J]. Qc Physics, 2006(3):3-13.
[38] 秦利军, 龚婷, 郝海霞, 等. 原子层沉积氧化物包覆层对奥克托金感度的影响[J]. 高等学校化学学报, 2015, 36(3):420-427. QIN Li-jun, GONG Ting, HAO Hai-xia, et al. Study of the HMX particles coated by vapor deposition[J]. Chemical Journal of Chinese Universities, 2015, 36(3):420-427.
[39] Li R, Wang J, Shen J P, et al. Preparation and characterization of insensitive HMX/graphene oxide composites[J]. Propellants,Explosives,Pyrotechnics, 2013, 38(6):798-804.
[40] 李茂果, 杜自卫, 廖宏. HMX颗粒的气相沉积包覆研究[J]. 真空, 2013, 50(6):23-26. LI Mao-guo, DU Zi-wei, LIAO Hong. Study of the HMX particles coated by vapor deposition[J]. Vacuum, 2013, 50(6):23-26.
[41] 李宁, 肖乐勤, 菅晓霞, 等. GAP基含能聚氨酯弹性体包覆RDX的研究[J]. 固体火箭技术, 2012, 35(2):212-215. LI Ning, XIAO Le-qin, JIAN Xiao-xia, et al. Coating of RDX with GAP-based energetic polyurethane elastomer[J]. Journal of Solid Rocket Technology, 2012, 35(2):212-215.
[42] 陆明, 周新利. RDX的TNT包覆钝感研究[J]. 火炸药学报, 2006, 29(6):16-18. LU Ming, ZHOU Xin-li. Research on insensitivity of RDX coated with TNT[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2006, 29(6):16-18.
[43] 高元元, 朱顺官, 陈鹏源. NTO包覆HMX的钝感研究[J]. 火炸药学报, 2014, 37(1):61-65. GAO Yuan-yuan, ZHU Shun-guan, CHEN Peng-yuan. Research on insensitivity of HMX coated with NTO[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2014, 37(1):61-65.
[44] Klap?tke M, Witkowski G. Covalent and ionic insensitive high-explosives[J]. Propellants Explosives Pyrotechnics, 2016, 41(3):470-483.
[45] Anniyappan M, Talawar M B, Gore G M, et al. Synthesis, characterization and thermolysis of 1,1-diamino-2,2-dinitroethylene (FOX-7 and its salts[J]. Journal of Hazardous Materials, 2006, 137(2):812-819.
[46] Dan C, Boatz J A, Thompson D. Classical and quantum-mechanical studies of crystalline FOX-7(1,1-diamino-2,2-dinitroethylene)[J]. Journal of Physical Chemistry A, 2001, 105(20):5010-5021.
[47] 蔡华强, 舒远杰, 郁卫飞, 等. FOX-7的合成和反应机理研究[J]. 化学学报, 2004, 62(3):295-301. CAI Hua-qiang, SHU Yuan-jie, YU Wei-fei, et al. Study on synthesis of FOX-7 and its reaction mechanism[J]. Acta Chimica Sinica, 2004, 62(3):295-301.
[48] 赵凤起, 高红旭, 徐司雨, 等. 含1,1-二氨基-2,2-二硝基乙烯(FOX-7)的钝感微烟推进剂能量参数和燃烧特性[J]. 火炸药学报, 2010, 33(4):1-4. ZHAO Feng-qi, GAO Hong-xu, XU Si-yu, et al. Energy parameters and combustion characteristics of the insensitive and minimum smoke propellants containing FOX-7[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2010, 33(4):1-4.
[49] 樊学忠, 付小龙, 邵重斌, 等. FOX-7对CMDB固体推进剂性能的影响[J]. 固体火箭技术, 2016, 39(2):201-206. FAN Xue-zhong, FU Xiao-long, SHAO Chong-bin, et al. Effect of 1,1-diamino-2,2-dintroethene(FOX-7) on properties of CMDB propellants[J]. Journal of Solid Rocket Technology, 2016, 39(2):201-206.
[50] 王伯周, 刘愆, 张志忠, 等. 新型含能材料FOX-12性能研究[J]. 含能材料, 2004,12(1):38-39. WANG Bo-zhou, LIU Qian, ZHANG Zhi-zhong, et al. Study on properties of FOX-12[J]. Energetic Materials, 2004,12(1):38-39.
[51] 庞军, 王江宁, 张蕊娥, 等. CL-20、DNTF和FOX-12在CMDB推进剂中的应用[J]. 火炸药学报, 2005, 28(1):19-21. PANG Jun, WANG Jiang-ning, ZHANG Rui-e, et al. Application of CL-20, FOX-12 and DNTF in CMDB propellant[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2005, 28(1):19-21.
[52] 张超, 张晓宏, 杨立波, 等. 含LLM-105的改性双基推进剂的机械感度[J]. 火工品, 2014(2):33-36. ZHANG Chao, ZHANG Xiao-hong, YANG Li-bo, et al. Mechanical sensitivity of composite modified double base propellant containing 2,6-diamino-3,5-dinitro pyrazine-1-oxide[J]. Initiators & Pyrotechnics, 2014(2):33-36.
[53] Fengqi Z, Pei C, Rongzu H, et al. Thermochemical properties and non-isothermal decomposition reaction kinetics of 3,4-dinitrofurazanfuroxan (DNTF)[J]. Journal of Hazardous Materials, 2004, 113(1-3):67.
[54] Sikder N, Sikder A K, Bulakh N R, et al. 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive:synthesis, characterization and thermal behaviour[J]. Journal of Hazardous Materials, 2004, 113(1-3):35.
[55] Talawar M B, Singh A, Naik N H, et al. Effect of organic additives on the mitigation of volatility of 1-nitro-3,3’-dinitroazetidine (TNAZ):next generation powerful melt cast able high energy material[J]. Journal of Hazardous Materials, 2006, 134(1/3):8-18.
[56] Li X, Wang B, Lin Q H, et al. Compatibility study of DNTF with some insensitive energetic materials and inert materials[J]. Journal of Energetic Materials, 2016, 34(4):409-415.
[57] 赵凤起, 李上文, 宋洪昌, 等. 国外新型钝感双基推进剂的研究[J]. 飞航导弹, 1999(9):29-32. ZHAO Feng-qi, LI Shang-wen, SONG Hong-chang, et al. Research on new insensitive double base propellant abroad[J]. Aerodynamic Missile Journal, 1999(9):29-32.
[58] 顾健, 周雷, 吴京汉. 钝感GAP微烟推进剂的能量性能计算[J]. 固体火箭技术, 2012, 35(1):88-92. GU Jian, ZHOU Lei, WU Jing-han. Energy characteristics calculation of insensitive and minimum smoke GAP solid propellant[J]. Journal of Solid Rocket Technology, 2012, 35(1):88-92.
[59] Rao K P C, Sikder A K, Kulkarni M A, et al. Studies on n-butyl nitroxyethylnitramine (n-BuNENA):synthesis, characterization and propellant evaluations[J]. Propellants Explosives Pyrotechnics, 2010, 29(2):93-98.
[60] 何利明, 郑剑, 罗运军. 含BuNENA钝感交联改性双基推进剂能量分析[J]. 固体火箭技术, 2015(1):90-94. HE Li-ming, ZHENG Jian, LUO Yun-jun. Energy properties of the insensitive and cross-linked BuNENA propellant[J]. Journal of Solid Rocket Technology, 2015(1):90-94.
[61] 沈华平, 卢艳华, 曹一林, 等. 新型钝感含能增塑剂3-硝基呋咱-4-甲醚的合成与性能研究[J]. 含能材料, 2011, 19(6):735-738. SHEN Hua-ping, LU Yan-hua, CAO Yi-lin, et al. Synthesis and characterization of novel insensitive energetic plasticizer 3-nitrofurazan-4-monomethyl ether[J]. Chinese Journal of Energetic Materials, 2011, 19(6):735-738.
[62] 张伟, 刘运飞, 谢五喜, 等. 热分析法研究AlH3与固体推进剂组分的相容性[J]. 火炸药学报, 2015, 38(1):41-46. ZHANG Wei, LIU Yun-fei, XIE Wu-xi, et al. Study on compatibility of AlH3 with compositions of solid propellant by thermal analysis method[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2015, 38(1):41-46.
[63] 李磊, 刘明珠, 王敏, 等. AlH3/PEG/NG/BTTN体系的热行为研究[J]. 固体火箭技术, 2015, 38(4):533-536. LI Lei, LIU Ming-zhu, WANG Min, et al. An investigation on thermal properties of AlH3/PEG/NG/BTTN[J]. Journal of Solid Rocket Technology, 2015, 38(4):533-536.
[64] Gore G M, Tipare K R, Divekar C N, et al. Studies on effect of incorporation of BDNPF/A on burning rates of RDX/AP/AI filled CMDB propellants[J]. Journal of Energetic Materials, 2002, 20(3):255-278.
[65] 刘长波, 朱天兵, 马英华, 等. BDNPF/A增塑剂的性能及其应用[J]. 化学推进剂与高分子材料, 2010, 8(1):23-27. LIU Chang-bo, ZHU Tian-bing, MA Ying-hua, et al. Properties and its application of BDNPF/A plasticizer[J]. Chemical Propellants & Polymeric Materials, 2010, 8(1):23-27.
[66] 张昊越, 付小龙, 蔚红建, 等. 叠氮推进剂的感度和能量特性研究[J]. 化学推进剂与高分子材料, 2014, 12(1):45-48. ZHANG Hao-yue, FU Xiao-long, YU Hong-jian, et al. Study on sensitivity and energy performance of azide propellants[J]. Chemical Propellants & Polymeric Materials, 2014, 12(1):45-48.
[67] 官焕祥, 刘云飞, 姚维尚, 等. 降低硝酸酯增塑聚醚推进剂燃速研究[J]. 推进技术, 2007, 28(2):216-219. GUAN Huan-xiang, LIU Yun-fei, YAO Wei-shang, et al. Study on decreasing the burning rate of nitrate ester plasticized polyether propellant[J]. Journal of Propulsion Technology, 2007, 28(2):216-219.
[68] 翟进贤, 杨荣杰, 李建民. 增塑剂及燃烧催化剂对BAMO-THF复合推进剂性能的影响[J]. 推进技术, 2008, 29(2):253-256. ZHAI Jin-xian, YANG Rong-jie, LI Jian-min. Influences of plasticizers and combustion catalyst on performance of composite BAMO-THF propellants[J]. Journal of Propulsion Technology, 2008, 29(2):253-256.
[69] Choudhari M K, Dhar, Shrotri P G, et al. Effect of high energy materials on sensitivity of composite modified double base CMDB propellant system[J]. Defence Science Journal, 2013, 42(4):253-257.
[70] 滕学峰, 邓重清, 胡铨, 等. 高氯酸铵(AP)基复合改性双基(AP/CMDB)推进剂燃速控制与降感研究[J]. 科学技术与工程, 2017, 17(6):178-182. TENG Xue-feng, DENG Chong-qing, HU Quan, et al. Research of burning rate controlling and sensitivity reducing of AP/CMDB propellant[J]. Science Technology and Engineering, 2017, 17(6):178-182.
[71] 李焕, 樊学忠, 庞维强. 低易损性固体推进剂钝感特性及评估试验方法研究进展[J]. 化学推进剂与高分子材料, 2017, 15(2):56-59. LI Huan, FAN Xue-zhong, PANG Wei-qiang. Research progress in insensitivity characteristic and evaluation test method of low vulnerability solid propellant[J]. Chemical Propellants & Polymeric Materials, 2017, 15(2):56-59.
[72] Asthana N, Divekar C N, Singh H. Studies on thermal stability, autoignition and stabilizer depletion for shelf life of CMDB propellants[J]. Journal of Hazardous Materials, 1989, 21(1):35-46.
[73] 尚海林, 赵锋, 王文强, 等. 冲击作用下炸药热点形成的3维离散元模拟[J]. 爆炸与冲击, 2010, 30(2):131-137. SHANG Hai-lin, ZHAO Feng, WANG Wen-qiang, et al. Three-dimensional discrete element simulation of hot spots in explosives under shock loading[J]. Explosion & Shock Waves, 2010, 30(2):131-137.
[74] 肖鹤鸣, 朱卫华, 肖继军, 等. 含能材料感度判别理论研究——从分子、晶体到复合材料[J]. 含能材料, 2012, 20(5):514-527. XIAO He-ming, ZHU Wei-hua, XIAO Ji-jun, et al. Theoretical studies on sensitivity criterion of energetic materials——from molecules,crystals,to composite materials[J]. Chinese Journal of Energetic Materials, 2012, 20(5):514-527.
[75] Yan Q, Zeman. Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods:a brief review[J]. International Journal of Quantum Chemistry, 2013, 113(8):1049-1061.
[76] Chen Z X, Xiao H M. Quantum chemistry derived criteria for impact sensitivity[J]. Propellants Explosives Pyrotechnics, 2014, 39(4):487-495.
[77] 廉鹏宰, 来蔚鹏, 王伯周, 等. 新型高能量密度化合物3,6-双(3,5-二硝基-1,2,4-三唑-1)-1,2,4,5-四嗪-1,4-二氧化物的性能预估及合成路线设计[J]. 化学学报, 2009, 67(20):2343-2348. LIAN Peng-zai, LAI Wei-peng, WANG Bo-zhou, et al. Design of synthetic route and prediction of properties for a novel high energetic density compound 3,6-Bis(3,5-dinitro-1,2,4-triazol-1-yl)-1,2,4,5-tetrazine-1,4-dioxide[J]. Acta Chimica Sinica, 2009, 67(20):2343-2348.
[78] 杜军良, 舒远杰, 周阳, 等. 用分子拓扑参数预估多硝基芳香族化合物的撞击感度[J]. 火炸药学报, 2010, 33(6):5-10. DU Jun-liang, SHU Yuan-jie, ZHOU Yang, et al. Predication on impact sensitivity of polynitroaromatic compounds using principal component regression[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2010, 33(6):5-10.
[79] Liu H, Jiang, Guo-Qiang Y U, et al. Application research of genetic-neural network method in the prediction of explosives’ impact sensitivity[J]. Initiators & Pyrotechnics, 2010, 42(2):221-32.
[80] Keshavarz M H, Jaafari M. Investigation of the various structure parameters for predicting impact sensitivity of energetic molecules via artificial neural network[J]. Propellants Explosives Pyrotechnics, 2010, 31(3):216-225.
[81] Zhang, Zybin V, Duin A C V, et al. Shock induced decomposition and sensitivity of energetic materials by ReaxFF molecular dynamics[C]//14th APS Topical Conference on Shock Compression of Condensed Matter. Baltimore:Bulletin of the American Physical Society, 2006:585-588.
[82] Xiao J, Wang W, Chen J, et al. Study on the relations of sensitivity with energy properties for HMX and HMX-based PBXs by molecular dynamics simulation[J]. Physica B Condensed Matter, 2012, 407(17):3504-3509.
[83] Xiao J J, Li Y, Chen J, et al. Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs[J]. Journal of Molecular Modeling, 2013, 19(2):803-809.
[84] Guo D, An Q, Iii Wa G, et al. Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity[J]. Journal of Physical Chemistry C, 2014, 118(51):30202-30208.
[85] Zhang C. Review of the establishment of nitro group charge method and its applications[J]. Journal of Hazardous Materials, 2009, 161(1):21.
[86] Edwards J, Eybl C, Johnson B. Correlation between sensitivity and approximated heats of detonation of several nitroamines using quantum mechanical methods[J]. International Journal of Quantum Chemistry, 2004, 100(5):713-719.
[87] And B M R, Hare J J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules[J]. Journal of Physical Chemistry A, 2002, 106(9):1770-1783.
[88] Xiao H M, Fan J, Gu Z M, et al. Theoretical study on pyrolysis and sensitivity of energetic compounds:(3 Nitro derivatives of aminobenzenes[J]. Chemical Physics, 1998, 226(1-2:15-24.
[89] Gu Z M, Fan J, Xiao H M, et al. A theoretical study on pyrolysis and sensitivity of energetic compounds*(V-Nitro derivatives of methylbenzene[J]. Chemical Research in Chinese Universities, 1999, 16(1):21-30.
[90] Chen Z X, Xiao H, Yang. Theoretical investigation on the impact sensitivity of tetrazole derivatives and their metal salts[J]. Chemical Physics, 1999, 250(3):243-248.
[91] 刘欢, 姜峰, 于国强, 等. 遗传-神经网络方法在炸药撞击感度预测中的应用研究[J]. 火工品, 2010, (6:42-45. LIU Huan, JIANG Feng, YU Guo-qiang, et al. Application research of genetic-neural network method in the prediction of explosives’ impact sensitivity[J]. Initiators & Pyrotechnics, 2010, 42(2):221-32.
[92] 钱博文, 陈利平, 陈网桦. 基于遗传算法的人工神经网络预测多硝基化合物撞击感度[J]. 含能材料, 2016, 24(7):644-650. QIAN Bo-wen, CHEN Li-ping, CHEN Wang-hua. Prediction of impact sensitivity of polynitro compounds by artificial neural network based on the genetic algorithm[J]. Chinese Journal of Energetic Materials, 2016, 24(7):644-650.
[93] 刘冬梅, 赵丽, 肖继军, 等. 不同温度下HMX和RDX晶体的感度判别和力学性能预估——分子动力学比较研究[J]. 高等学校化学学报, 2013, 34(11):2558-2565. LIU Dong-mei, ZHAO Li, XIAO Ji-jun, et al. Sensitivity criterion and mechanical properties prediction of HMX and RDX crystals at different temperatures——comparative study with molecular dymamics simulation[J]. Chemical Journal of Chinese Universities, 2013, 21(5):563-569.
[94] 刘轶. 含能材料和自燃推进剂的反应动力学模拟研究[C]//全国强动载效应及防护学术会议暨复杂介质/结构的动态力学行为创新研究群体学术研讨会. 北京:中国力学学会, 2013. LIU Yi. Simulation study on reaction kinetics of energetic materials and self-ignition propellants[C]//Symposium on Dynamic Load Effects and Protection in China, and Dynamic Mechanical Behavior of Complex Media/Structures. Beijing:Chinese Society of Theoretical and Applied Mechanics, 2013.
[95] 严启龙, 宋振伟, 安亭, 等. 含能材料物理化学性能理论预估研究进展[J]. 火炸药学报, 2016, 39(5):1-12. YAN Qi-long, SONG Zhen-wei, AN Ting, et al. Research progress in theoretical prediction of physicochemical properties for energetic materials[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2016, 39(5):1-12.
[96] Jaffe I, Price D. Safety information from propellant sensitivity studies[J]. Aiaa Journal, 2015, 1(2):389-394.
[97] So W, Francis E C. Dynamic finite element analysis of solid propellant impact test[J]. Journal of Spacecraft & Rockets, 1991, 28(6):658-662.
[98] 齐晓飞, 张晓宏, 李吉祯, 等. NC/NG共混体系的分子动力学模拟研究[J]. 兵工学报, 2013, 34(1):93-99. QI Xiao-fei, ZHANG Xiao-hong, LI Ji-zhen, et al. Molecular dynamics simulation of NC/NG blends[J]. Acta Armamentarii, 2013, 34(1):93-99.
[99] 齐晓飞, 张晓宏, 张伟, et al. NC/NG共混体系的塑化行为[J]. 推进技术, 2013, 34(6):843-848. QI Xiao-fei, ZHANG Xiao-hong, ZHANG Wei, et al. Study on plasticizing process of NC/NG blends[J]. Journal of Propulsion Technology, 2013, 34(6):843-848.
[100] 朱伟, 刘冬梅, 肖继军, 等. 多组分高能复合体系的感度判据、热膨胀和力学性能的MD研究[J]. 含能材料, 2014,22(5):582-587. ZHU Wei, LIU Dong-mei, XIAO Ji-jun, et al. Molecular dynamics study on sensitivity criterion, thermal expansion and mechanical properties of multi-component high energy systems[J]. Chinese Journal of Energetic Materials, 2014, 22(5):582-587.
[101] 付一政, 康志鹏, 郭志婧, 等. 共晶和共混对CL-20/DNB感度和热解机理影响的MD模拟[J]. 含能材料, 2017, 25(2):94-99. FU Yi-zheng, KANG Zhi-peng, GUO Zhi-jing, et al. Effect of cocrystallizing and mixing on sensitivity and thermal decomposition mechanisms of CL-20/DNB via MD simulation[J]. Chinese Journal of Energetic Materials, 2017, 25(2):94-99.

相似文献/References:

[1]董树南,王世英,朱晋生,等.含ACP改性双基推进剂的燃烧转爆轰实验研究[J].火炸药学报,2007,30(2):17.
[2]王飞俊,杨斐霏,王江宁,等.NGEC基改性双基推进剂的制备及性能[J].火炸药学报,2006,29(6):51.
[3]王峰,秦能,贺海民,等.一种非铅催化硝胺改性双基低燃速低燃温推进剂[J].火炸药学报,2006,29(4):49.
[4]张腊莹,刘子如,衡淑云,等.GS-1改性双基推进剂老化的动态力学表征[J].火炸药学报,2006,29(2):76.
[5]庞军,王江宁,张蕊娥,等.CL-20、DNTF和FOX-12在CMDB推进剂中的应用[J].火炸药学报,2005,28(1):19.
[6]张晓宏,赵凤起,谭惠民.用键合剂改善硝胺CMDB推进剂的力学性能[J].火炸药学报,2005,28(2):1.
[7]党永战,赵凤起.含相稳定硝酸铵CMDB推进剂的机械感度和燃烧性能[J].火炸药学报,2005,28(2):13.
[8]王江宁,冯长根,田长华.含CL-20、DNTF和FOX-12的CMDB推进剂的热分解[J].火炸药学报,2005,28(3):17.
[9]张晓宏,张蕊娥,王百成,等.利用燃烧稳定剂调节燃速的研究[J].火炸药学报,2000,23(3):28.
[10]张晓宏,赵凤起,谭惠民.Al粉含量对CMDB推进剂特征信号的影响[J].火炸药学报,2008,31(2):21.

备注/Memo

备注/Memo:
收稿日期:2017-09-03;改回日期:2017-10-29。
基金项目:国家安全重大基础研究项目
作者简介:陈京(1988-),男,博士,助理研究员,从事固体推进剂研究。E-mail:chenjing_mcri@163.com
通讯作者:樊学忠(1962-),男,研究员,博士生导师,从事固体推进剂配方及工艺技术研究。E-mail:xuezhongfan@126.com
更新日期/Last Update: 1900-01-01