|本期目录/Table of Contents|

[1]王晶禹,李旭阳,武碧栋,等.3,3’-二氨基-4,4’-氧化偶氮呋咱(DAAF)的合成、细化和热分析[J].火炸药学报,2019,42(3):232-235,241.[doi:10.14077/j.issn.1007-7812.2019.03.003]
 WANG Jing-yu,LI Xu-yang,WU Bi-dong,et al.Synthesis, Refinement and Thermal Analysis of 3,3’-Diamino-4,4’-azoxyfurazan (DAAF)[J].,2019,42(3):232-235,241.[doi:10.14077/j.issn.1007-7812.2019.03.003]
点击复制

3,3’-二氨基-4,4’-氧化偶氮呋咱(DAAF)的合成、细化和热分析()
     
分享到:

《火炸药学报》[ISSN:1007-7812/CN:61-1310/TJ]

卷:
42卷
期数:
2019年第3期
页码:
232-235,241
栏目:
出版日期:
2019-06-30

文章信息/Info

Title:
Synthesis, Refinement and Thermal Analysis of 3,3’-Diamino-4,4’-azoxyfurazan (DAAF)
作者:
王晶禹 李旭阳 武碧栋 杨玥 刘淑杰 安崇伟
1. 中北大学环境与安全工程学院, 山西 太原 030051;
2. 山西省超细粉体工程技术研究中心, 山西 太原 030051
Author(s):
WANG Jing-yu LI Xu-yang WU Bi-dong YANG Yue LIU Shu-jie AN Chong-wei
1. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China;
2. Shanxi Engineering Technology Research Center for Ultrafine Powder, Taiyuan 030051, China
关键词:
有机化学33’-二氨基-44’-氧化偶氮呋咱(DAAF)DAF重结晶呋咱类化合物
Keywords:
organic chemistry33’-diamino-44’-azoxyfurazan (DAAF)DAFrecrystallizationfurazan compounds
分类号:
TJ55;O62
DOI:
10.14077/j.issn.1007-7812.2019.03.003
文献标志码:
-
摘要:
为获得性能良好的3,3’-二氨基-4,4’-氧化偶氮呋咱(DAAF),以乙二醛和盐酸羟胺为原料制备了DAAF,并采用低温滴加重结晶细化方法得到了亚微米级DAAF;采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和差示扫描量热仪(DSC)表征样品的形貌、晶型和热分解性能,并采用Kissinger法、Ozawa法和Starink法计算其表观活化能和热爆炸临界温度。结果表明,当溶剂二甲基亚砜为常温(20℃)、非溶剂水为0℃时,重结晶细化能获得粒径约500 nm的类球形DAAF;细化DAAF的活化能为160.3 kJ/mol,热爆炸临界温度为248.6℃,具有较好的热安定性。
Abstract:
To obtain the 3,3’-diamino-4,4’-azoxyfurazan (DAAF) with good performance, DAAF was prepared with glyoxal and hydroxylamine hydrochloride as raw materials, and the submicron-scale DAAF was obtained by low-temperature dropping recrystallization refinement method. The morphology, crystal forms and thermal decomposition properties of the DAAF samples were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and differential scanning calorimetry (DSC), respectively. The Kissinger’s method, Ozawa’s method and Starink’s method were used to calculate the apparent activation energy and critical temperature of thermal explosion. The results show that the spherical-like DAAF with a particle size of about 500 nm can be obtained through the recrystallization refinement when the dimethyl sulfoxide solvent is at room temperature (20℃) and non-solvent water at 0℃. The apparent activation energy and critical temperature of the thermal explosion of the refined DAAF were 160.3 kJ/mol and 248.6℃, indicating that it has better thermal stability.

参考文献/References:

[1] 郭向利, 韩勇, 曹威, 等. TATB基和CL-20基PBX炸药爆轰波拐角性能的实验研究[J]. 火炸药学报, 2015, 38(5):41-45. GUO Xiang-li, HAN Yong, CAO Wei, et al. Corner performance of detonation waves in TATB-based and CL-20-based PBX explosive[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(5):41-45.
[2] 王保国, 张景林, 陈亚芳. HMX/TATB基高聚物粘结传爆药的研究[J]. 含能材料, 2007, 15(1):9-11. WANG Bao-guo, ZHANG Jing-lin, CHEN Ya-fang. Theoretical analysis on friction sensitivity of high explosive[J]. Chinese Journal of Energetic Materials, 2007, 15(1):9-11.
[3] 吴永炎. 超细TATB的制备及TATB基传爆药配方设计初探[D]. 太原:中北大学, 2013. WU Yong-yan. Preparation of ultrafine TATB and formula design study of booster explosive based TATB[D]. Taiyuan:North University of China, 2013.
[4] 于卫龙. 含TATB传爆药制备及工艺优化[D]. 太原:中北大学, 2016. YU Wei-long. Preparation and process optimization of TATB booster explosive[D]. Taiyuan:North University of China, 2016.
[5] Sheremeteeev A B. Chemistry of furazans fused to fived-membered rings[J]. Heterocyclic Chemistry, 1995, 26(2):371-384.
[6] Francois E G, Chavez D E, Sandstrom M M. The development of a new synthesis process for 3,3-diamino-4,4’azoxyfurazan (DAAF)[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(6):529-534.
[7] 王小旭, 张勇, 黄明. 高纯3,3’-二氨基-4,4’-氧化偶氮呋咱(DAOAF)的合成工艺[J]. 含能材料, 2017, 25(10):838-842. WANG Xiao-xu, ZHANG Yong, HUANG Ming. Synthesis of high-purity 3,3’-diamino-4,4’-azoxyfurazan(DAOAF)[J]. Chinese Journal of Energetic Materials, 2017, 25(10):838-842.
[8] Tappan B C, Bowden P R, Lichthardt J P, et al. Evaluation of the detonation performance of insensitive explosive formulations based on 3,3’-4,4’-Azoxyfurazan (DAAF) and 3-nitro-1,2,4-triazol-5-one (NTO)[J]. Journal of Energetic Materials, 2017, 36(2):1-10.
[9] Gunasekaran A, Jayachandran T, Boyer J H, et al. A convenient synthesis of diaminoglyoxime and diaminofurazan:useful precursors for the synthesis of high density energetic msterials[J]. Journal of Heterocyclic Chemistry, 1995, 32(1):1405.
[10] Hiskey M A, Chavez D E, Bishop R L, et a1. Use of 3,3’-diamino-4,4’-azoxyfurazan and 3,3’-diamino-4,4’-azofurazan as insensitive high explosive materials:US, 6358339[P]. 2002.
[11] 王元元. 炸药重结晶晶形及粒度控制研究[D]. 太原:中北大学, 2009. WANG Yuan-yuan. Study on crystal shape and granulation controlling of explosives by recrystallization[D]. Taiyuan:North University of China, 2009.
[12] Kissinger H E. Reaction kinetics in fifferential thermal analysis[J]. Analytical and Bioanalytical Chemistry, 1957, 29(11):1702-1706.
[13] Ozawa T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 11(38):1881-1886.
[14] Boswell P G. On the calculation of activation energies using a modified kissinger method[J]. Journal of Thermal Analysis and Calorimetry,1980, 38(11):353-358.
[15] 陈腾, 李强, 郭双峰,等. GAP-HDI/CL-20纳米复合含能材料的制备、表征及其热分解特性[J].火炸药学报,2018, 41(3):243-249. CHEN Teng, LI Qiang, GUO Shuang-feng, et al. Preparation, characterization and thermal decomposition of GAP-HDI/CL-20 nanocomposite energetic materials[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2018, 41(3):243-249.

相似文献/References:

[1]彭汝芳,金 波,马冬梅,等.2-(2-硝基苯基)吡咯烷[3′,4′∶1,2][60]富勒烯的合成[J].火炸药学报,2007,30(2):29.
[2]陈 斌,张志忠,姬月萍.偕二硝基类含能增塑剂的合成及应用[J].火炸药学报,2007,30(2):67.
[3]莫洪昌,甘孝贤.3-硝酸酯甲基-3-甲基氧杂环丁烷的合成及表征[J].火炸药学报,2006,29(6):58.
[4]郑晓东,马晓东,邱少君,等.一种新型叠氮含能固化剂的合成及性能[J].火炸药学报,2006,29(5):63.
[5]韩涛,甘孝贤,邢颖,等.3-叠氮甲基-3-乙基氧杂环丁烷及其均聚物的合成与性能[J].火炸药学报,2006,29(5):72.
[6]曹继平,李东林,王吉贵.不饱和聚酯包覆含DNT双基推进剂的研究[J].火炸药学报,2006,29(4):41.
[7]李东林,曹继平,王吉贵.不饱和聚酯包覆层的耐烧蚀性能[J].火炸药学报,2006,29(3):17.
[8]马海霞,宋纪蓉,肖鹤鸣,等.3,4-二硝基呋咱基氧化呋咱(DNTF)的密度泛函理论研究[J].火炸药学报,2006,29(3):43.
[9]钱华,吕春绪,叶志文.绿色硝解合成六硝基六氮杂异伍兹烷[J].火炸药学报,2006,29(3):52.
[10]赵建民,李加荣,魏筱洁,等.三硝基吡啶及其N-氧化物的合成[J].火炸药学报,2006,29(3):73.
[11]周彦水,李建康,黄新萍,等.3,4-双(4′-氨基呋咱基-3′)氧化呋咱的合成及性能[J].火炸药学报,2007,30(1):54.
[12]王伯周,廉鹏,刘愆,等.富氮化合物3,3’-偶氮双(6-氨基-1,2,4,5-四嗪)合成研究[J].火炸药学报,2006,29(2):15.
[13]徐容,周小清,曾贵玉,等.TEX的合成研究[J].火炸药学报,2006,29(2):26.
[14]张志刚,卢先明,甘孝贤,等.相转移催化法合成BBMO和BAMO[J].火炸药学报,2007,30(5):32.
[15]贾思媛,王锡杰,王伯周,等.3,3′二硝基5,5′偶氮1H1,2,4三唑的合成与晶体结构[J].火炸药学报,2009,32(1):25.
 JIA Si yuan,WANG Xi jie,WANG Bo zhou,et al.Synthesis and Crystal Structure of 3,3′Dinitro 5,5′azo1H1,2,4triazole(DNAT)[J].,2009,32(3):25.
[16]徐若千,姬月萍,丁峰,等.1,3,5-三羟乙基三嗪酮的富能化合成与表征[J].火炸药学报,2009,32(4):38.
 XU Ruo qian,JI Yue ping,DING Feng,et al.Energized Synthesis and Characterization of 1,3,5Tris(2hydroxy ethyl) 1,3,5triazinane2,4,6trione[J].,2009,32(3):38.
[17]李亚南,张志忠,周彦水,等.3,4-二(吡嗪-2′-基)氧化呋咱的合成与表征[J].火炸药学报,2009,32(6):40.
[18]莫洪昌,甘孝贤,李娜,等.3,4-环氧基丁醇硝酸酯的合成[J].火炸药学报,2010,33(1):24.
 MO Hong-chang,GANXiao-xian,LIc/span>Na,et al.Synthesis of 3,4-Epoxybutanol Nitrate[J].,2010,33(3):24.
[19]薛云娜,杨建明,李春迎,等.3,4-二苯基氧化呋咱的高效合成[J].火炸药学报,2010,33(1):34.
 XUE Yun-na,YANG Jian-ming,LI Chun-ying,et al.Synthesis of 3,4-Diphenylfuroxan with High Efficiency[J].,2010,33(3):34.
[20]周诚,周彦水,霍欢,等.1,3,5-三硝基-六氢化-1,3,5-三嗪-2-酮的合成与表征[J].火炸药学报,2011,34(4):17.
 ZHOU Cheng,ZHOU Yan-shui,HUO Huan,et al.Synthesis and Characterization of 1,3,5-Trinitro-hexahydro-1,3,5-triazin-2(1H)-one[J].,2011,34(3):17.

备注/Memo

备注/Memo:
收稿日期:2018-8-2;改回日期:2018-10-23。
基金项目:装备预研兵器工业联合基金(No.6141B012896);中北大学重点实验室开放研究基金(No.DXMBJJ2017-05)
作者简介:王晶禹(1967-),男,教授,从事新型传爆药技术研究。E-mail:wjingyu@nuc.edu.cn
更新日期/Last Update: 1900-01-01